11 research outputs found

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures

    No full text
    We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O] 8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed. © 2013 AIP Publishing LLC.Fil:Videla, P.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    High energy radiation femtochemistry of water molecules: early electron-radical pairs processes

    No full text
    International audienceThe damages triggered by ionizing radiation on chemical and biological targets depend on the survival probability of radicals produced in clusters of ionization-excitation events. In this paper, we report on femtolysis (FEMTOsecond radioLYSIS) of pure liquid water using an innovative laser produced high-energy, ultra-short electron bunches in the 2.5-15 MeV range and high energy radiation femtochemistry (HERF) measurements. The short-time monitoring of a primary reducing radical, hydrated electron e¯¯aq, has been performed in confined ionization spaces (nascent spurs). The calculated yield of hydrated electrons at early time,G(e⁻aq)ET , is estimated to be 6.5 ± 0.5 (number/100 eV) at t ~ 5 ps after the ultrafast energy deposition. This estimated value is high compare to (i) the available data of previous works that used scavenging techniques; (ii) the predictions of stochastic water radiolysis modelling for which the initial behaviour of hydrated electron is investigated in the framework of a classical diffusion regime of independent pairs. The HERF developments give new insights into the early ubiquitous radical escape probability in nascent aqueous spurs and emphasize the importance of short-lived solvent bridged electron-radical complexes [H3O+...e⁻aq..OH]nH2O (non-independent pairs). A complete understanding of the G(e⁻aq)ET value needs to account for quantum aspects of 1s-like trapped electron ground state and neoformed prototropic radicals that govern ultra-fast recombination processes within these non-independent pair configurations. Femtolysis data emphasize that within a time-dependent non-diffusion regime, spatio-temporal correlations between hydrated electron and nearest neighbours OH radical or hydrated proton (H3O+) would assist ultrafast anisotropic 1D recombination within solvent bridged electron-radical complexes. The emerging HERF domain would provide guidance for understanding of ultrashort-lived sub-structure of tracks and stimulate future semi-quantum simulations on prethermal radical reactions
    corecore