129 research outputs found

    Dyson-Schwinger Equations - aspects of the pion

    Get PDF
    The contemporary use of Dyson-Schwinger equations in hadronic physics is exemplified via applications to the calculation of pseudoscalar meson masses, and inclusive deep inelastic scattering with a determination of the pion's valence-quark distribution function.Comment: 4 pages. Contribution to the Proceedings of ``DPF 2000,'' the Meeting of the Division of Particles and Fields of the American Physical Society, August 9-12, 2000, Department of Physics, the Ohio State University, Columbus, Ohi

    A direct numerical simulation method for complex modulus of particle dispersions

    Full text link
    We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {\bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage G(ω)G'(\omega) and loss G"(ω)G"(\omega) moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of Φ=0\Phi=0, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions

    Valence-quark distributions in the pion

    Get PDF
    We calculate the pion's valence-quark momentum-fraction probability distribution using a Dyson-Schwinger equation model. Valence-quarks with an active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it yields first, second and third moments in agreement with lattice and phenomenological estimates, and valence-quarks carrying 49% of the pion's momentum. However, pointwise there is a discrepancy between our calculated distribution and that hitherto inferred from parametrisations of extant pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections, version to appear in PR

    Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry

    Full text link
    Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number {\kappa}. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C_{s} from the valence energy spectrum of particle and also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter {\alpha}. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.Comment: 21 pages, 6 figure

    Transverse lattice calculation of the pion light-cone wavefunctions

    Get PDF
    We calculate the light-cone wavefunctions of the pion by solving the meson boundstate problem in a coarse transverse lattice gauge theory using DLCQ. A large-N_c approximation is made and the light-cone Hamiltonian expanded in massive dynamical fields at fixed lattice spacing. In contrast to earlier calculations, we include contributions from states containing many gluonic link-fields between the quarks.The Hamiltonian is renormalised by a combination of covariance conditions on boundstates and fitting the physical masses M_rho and M_pi, decay constant f_pi, and the string tension sigma. Good covariance is obtained for the lightest 0^{-+} state, which we identify with the pion. Many observables can be deduced from its light-cone wavefunctions.After perturbative evolution,the quark valence structure function is found to be consistent with the experimental structure function deduced from Drell-Yan pi-nucleon data in the valence region x > 0.5. In addition, the pion distribution amplitude is consistent with the experimental distribution deduced from the pi gamma^* gamma transition form factor and diffractive dissociation. A new observable we calculate is the probability for quark helicity correlation. We find a 45% probability that the valence-quark helicities are aligned in the pion.Comment: 27 pages, 9 figure

    Axion Radiation from Strings

    Get PDF
    This paper revisits the problem of the string decay contribution to the axion cosmological energy density. We show that this contribution is proportional to the average relative increase when axion strings decay of a certain quantity NaxN_{\rm ax} which we define. We carry out numerical simulations of the evolution and decay of circular and non-circular string loops, of bent strings with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the case of string loops and of vortex-antivortex pairs, NaxN_{\rm ax} decreases by approximately 20%. In the case of bent strings, NaxN_{\rm ax} remains constant or increases slightly. Our results imply that the string decay contribution to the axion energy density is of the same order of magnitude as the well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Single-neutron states in Sn101

    Get PDF
    The first data on the relative single-particle energies outside the doubly magic Sn100 nucleus were obtained. A prompt 171.7(6)keV γ-ray transition was correlated with protons emitted following the β decay of Sn101 and is interpreted as the transition between the single-neutron g7/2 and d5/2 orbitals in Sn101. This observation provides a stringent test of current nuclear structure models. The measured νg7/2-νd5/2 energy splitting is compared with values calculated using mean-field nuclear potentials and is used to calculate low-energy excited states in light Sn isotopes in the framework of the shell model. The correlation technique used in this work offers possibilities for future, more extensive spectroscopy near Sn100

    New results near 100Sn: Observation of single-neutron states in 101Sn

    Get PDF
    A search for in-beam γ-ray transitions in 101Sn, which contains only one neutron outside the 100Sn core, using a novel approach was carried out at the Argonne Tandem-Linac System. 101Sn nuclei were produced using the 46Ti(58Ni, 3n) 101Sn fusion-evaporation reaction. Beta-delayed protons with energies and decay times consistent with previous 101Sn decay studies were observed at the focal plane of the Fragment Mass Analyzer. In-beam γ rays were detected in the Gammasphere Ge-detector array and were correlated with the 101Sn β-delayed protons using the Recoil-Decay Tagging method. As a result, a γ-ray transition between the single-neutron vg7/2 and vd5/2 states situated at the Fermi surface was identified. The measured vg7/2-vd5/2 energy splitting was compared with predictions corresponding to various mean-field potentials and was used to calculate multi-neutron configurations in light Sn isotopes. Similar approach can be used to study core excitations in 101Sn and other exotic nuclei near 100Sn
    corecore