6 research outputs found

    A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    Get PDF
    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the thicknesses of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee [J. Comput. Phys. 86, 187] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin [J. Comput. Phys. 163, 216] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving and the statistical average of this method is shown to significantly delay the onset of pinning

    High speed video capture for mobile phone cameras

    Get PDF
    We consider an electromechanical model for the operation of a voice coil motor in a mobile phone camera, with the aim of optimizing how a lens can be moved to a desired focusing motion. Although a methodology is developed for optimizing lens shift, there is some concern about the experimentally-determined model parameters that are at our disposal. Central to the model is the value of the estimated magnetic force constant, Kf: its value determines how far it is actually possible to move lens, but it appears that, from the value given, it would not be possible to shift the lens through the displacements desired. Furthermore, earlier experiments have also estimated the value of the back EMF constant, Kg , to be roughly five times greater than Kf, even though we present two theoretical arguments that show that Kf = Kg: a conclusion supported by readily-available manufacturers’ data
    corecore