1,125 research outputs found
Supersymmetric Non-local Gas Equation
In this paper we study systematically the question of supersymmetrization of
the non-local gas equation. We obtain both the N=1 and the N=2 supersymmetric
generalizations of the system which are integrable. We show that both the
systems are bi-Hamiltonian. While the N=1 supersymmetrization allows the
hierarchy of equations to be extended to negative orders (local equations), we
argue that this is not the case for the N=2 supersymmetrization. In the bosonic
limit, however, the N=2 system of equations lead to a new coupled integrable
system of equations.Comment: RevTex, 7page
Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling
We theoretically study energy relaxation via LO-phonon emission in an excited
one-dimensional electron gas confined in a GaAs quantum wire structure. We find
that the inclusion of phonon renormalization effects in the theory extends the
LO-phonon dominated loss regime down to substantially lower temperatures. We
show that a simple plasmon-pole approximation works well for this problem, and
discuss implications of our results for low temperature electron heating
experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Impact of transcranial direct current stimulation (tDCS) on neuronal functions
Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects
Dexamethasone inhibits ozone-induced gene expression of macrophage inflammatory protein-2 in rat lung
AbstractTo address the potential role of the chemokine macrophage inflammatory protein-2 (MIP-2) in airway inflammation, we examined whether MIP-2 may play a role in ozone-induced neutrophilic inflammation of airways and its modulation by dexamethasone in rat lung. Following ozone exposure, MIP-2 mRNA expression in the lung peaked at 2 h after exposure and slowly declined thereafter. Dexamethasone suppressed ozone-induced MIP-2 mRNA expression and neutrophil accumulation in the lung. We suggest that the MIP-2 mRNA induction may switch on the neutrophilic influx observed in this model of lung inflammation. Furthermore, the MIP-2 expression is regulated by dexamethasone which may represent one of the mechanisms by which glucocorticoids exert their potent anti-inflammatory properties
An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion
We apply the theory of algebraic polynomials to analytically study the
transonic properties of general relativistic hydrodynamic axisymmetric
accretion onto non-rotating astrophysical black holes. For such accretion
phenomena, the conserved specific energy of the flow, which turns out to be one
of the two first integrals of motion in the system studied, can be expressed as
a 8 degree polynomial of the critical point of the flow configuration.
We then construct the corresponding Sturm's chain algorithm to calculate the
number of real roots lying within the astrophysically relevant domain of
. This allows, for the first time in literature, to {\it
analytically} find out the maximum number of physically acceptable solution an
accretion flow with certain geometric configuration, space-time metric, and
equation of state can have, and thus to investigate its multi-critical
properties {\it completely analytically}, for accretion flow in which the
location of the critical points can not be computed without taking recourse to
the numerical scheme. This work can further be generalized to analytically
calculate the maximal number of equilibrium points certain autonomous dynamical
system can have in general. We also demonstrate how the transition from a
mono-critical to multi-critical (or vice versa) flow configuration can be
realized through the saddle-centre bifurcation phenomena using certain
techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and
Gravitation
Thermal Unparticles: A New Form of Energy Density in the Universe
Unparticle \U with scaling dimension d_\U has peculiar thermal properties
due to its unique phase space structure. We find that the equation of state
parameter \omega_\U, the ratio of pressure to energy density, is given by
1/(2d_\U +1) providing a new form of energy in our universe. In an expanding
universe, the unparticle energy density \rho_\U(T) evolves dramatically
differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a
high decoupling temperature is very small, it is possible to have a large
relic density \rho_\U(T^0_\gamma) at present photon temperature ,
large enough to play the role of dark matter. We calculate and
\rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version
A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice
We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1–3.2 Hz) and amplitude (0.5–8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual ret
How much time should long-term care and geriatric rehabilitation facilities (nursing homes) spend on infection control?
Background: For hospitals, standards for the required number of infection control personnel are outdated and disputed. Such standards are not even available for long-term care and geriatric rehabilitation facilities (ie, nursing homes). This study addressed the question of how much time nursing homes should spend on infection control. Methods: Through group discussions and individual sessions, experienced infection control practitioners, medical microbiologists, and nursing home doctors evaluated the time needed to perform infection control activities in a model nursing home. Results: The number of hours needed was estimated as 513 per 100 beds, or 154 per 10,000 care-days per year. Conclusion: Given that significant differences can be expected among the various facilities identified as nursing homes, long-term care facilities, or geriatric rehabilitation centers, as well as among countries, the standard that we propose for The Netherlands will not be generally applicable. However, the method we have used to determine this standard can be easily applied in other countries and settings.Public Health and primary careGeriatrics in primary careAntimicrobial treatment and prevention of infection
Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: integrated pooled clinical trial and post-marketing surveillance data
Background:
Secukinumab, a fully human immunoglobulin G1-kappa monoclonal antibody that directly inhibits interleukin (IL)-17A, has been shown to have robust efficacy in the treatment of moderate-to-severe psoriasis (PsO), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) demonstrating a rapid onset of action and sustained long-term clinical responses with a consistently favorable safety profile in multiple Phase 2 and 3 trials. Here, we report longer-term pooled safety and tolerability data for secukinumab across three indications (up to 5 years of treatment in PsO and PsA; up to 4 years in AS).
Methods:
The integrated clinical trial safety dataset included data pooled from 21 randomized controlled clinical trials of secukinumab 300 or 150 or 75 mg in PsO (14 Phase 3 trials and 1 Phase 4 trial), PsA (3 Phase 3 trials), and AS (3 Phase 3 trials), along with post-marketing safety surveillance data with a cut-off date of June 25, 2017. Adverse events (AEs) were reported as exposure-adjusted incident rates (EAIRs) per 100 patient-years. Analyses included all patients who received ≥ 1 dose of secukinumab.
Results:
A total of 5181, 1380, and 794 patients from PsO, PsA, and AS clinical trials representing secukinumab exposures of 10,416.9, 3866.9, and 1943.1 patient-years, respectively, and post-marketing data from patients with a cumulative exposure to secukinumab of ~ 96,054 patient-years were included in the analysis. The most frequent AE was upper respiratory tract infection. EAIRs across PsO, PsA, and AS indications were generally low for serious infections (1.4, 1.9, and 1.2, respectively), Candida infections (2.2, 1.5, and 0.7, respectively), inflammatory bowel disease (0.01, 0.05, and 0.1, respectively), and major adverse cardiac events (0.3, 0.4, and 0.6, respectively). No cases of tuberculosis reactivation were reported. The incidence of treatment-emergent anti-drug antibodies was low with secukinumab across all studies, with no discernible loss of efficacy, unexpected alterations in pharmacokinetics, or association with immunogenicity-related AEs.
Conclusions:
Secukinumab demonstrated a favorable safety profile over long-term treatment in patients with PsO, PsA, and AS. This comprehensive assessment demonstrated that the safety profile of secukinumab was consistent with previous reports in patients with PsO, PsA, and AS, supporting its long-term use in these chronic conditions
- …