335 research outputs found
Light Cone Condition for a Thermalized QED Vacuum
Within the QED effective action approach, we study the propagation of
low-frequency light at finite temperature. Starting from a general effective
Lagrangian for slowly varying fields whose structure is solely dictated by
Lorentz covariance and gauge invariance, we derive the light cone condition for
light propagating in a thermalized QED vacuum. As an application, we calculate
the velocity shifts, i.e., refractive indices of the vacuum, induced by
thermalized fermions to one loop. We investigate various temperature domains
and also include a background magnetic field. While low-temperature effects to
one loop are exponentially damped by the electron mass, there exists a maximum
velocity shift of in the
intermediate-temperature domain .Comment: 9 pages, 3 figures, REVTeX, typos corrected, final version to appear
in Phys. Rev.
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
Phase structures of strong coupling lattice QCD with finite baryon and isospin density
Quantum chromodynamics (QCD) at finite temperature (T), baryon chemical
potential (\muB) and isospin chemical potential (\muI) is studied in the strong
coupling limit on a lattice with staggered fermions. With the use of large
dimensional expansion and the mean field approximation, we derive an effective
action written in terms of the chiral condensate and pion condensate as a
function of T, \muB and \muI. The phase structure in the space of T and \muB is
elucidated, and simple analytical formulas for the critical line of the chiral
phase transition and the tricritical point are derived. The effects of a finite
quark mass (m) and finite \muI on the phase diagram are discussed. We also
investigate the phase structure in the space of T, \muI and m, and clarify the
correspondence between color SU(3) QCD with finite isospin density and color
SU(2) QCD with finite baryon density. Comparisons of our results with those
from recent Monte Carlo lattice simulations on finite density QCD are given.Comment: 18 pages, 6 figures, revtex4; some discussions are clarified, version
to appear in Phys. Rev.
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
Phenomenology of non-standard Z couplings in exclusive semileptonic b -> s transitions
The rare decays , and
are analyzed in a generic scenario where New Physics effects
enter predominantly via penguin contributions. We show that this
possibility is well motivated on theoretical grounds, as the vertex
is particularly susceptible to non-standard dynamics. In addition, such a
framework is also interesting phenomenologically since the coupling
is rather poorly constrained by present data. The characteristic features of
this scenario for the relevant decay rates and distributions are investigated.
We emphasize that both sign and magnitude of the forward-backward asymmetry of
the decay leptons in , , carry sensitive information on New Physics. The observable is proposed as a useful probe of
non-standard CP violation in couplings.Comment: Minor modifications; version to appear in Phys. Rev.
Measurement of the D+ and Ds+ decays into K+K-K+
We present the first clear observation of the doubly Cabibbo suppressed decay
D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay
Ds+ --> K-K+K+. These signals have been obtained by analyzing the high
statistics sample of photoproduced charm particles of the FOCUS(E831)
experiment at Fermilab. We measure the following relative branching ratios:
Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/-
0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) =
(8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure
Differential geometry construction of anomalies and topological invariants in various dimensions
In the model of extended non-Abelian tensor gauge fields we have found new
metric-independent densities: the exact (2n+3)-forms and their secondary
characteristics, the (2n+2)-forms as well as the exact 6n-forms and the
corresponding secondary (6n-1)-forms. These forms are the analogs of the
Pontryagin densities: the exact 2n-forms and Chern-Simons secondary
characteristics, the (2n-1)-forms. The (2n+3)- and 6n-forms are gauge invariant
densities, while the (2n+2)- and (6n-1)-forms transform non-trivially under
gauge transformations, that we compare with the corresponding transformations
of the Chern-Simons secondary characteristics. This construction allows to
identify new potential gauge anomalies in various dimensions.Comment: 27 pages, references added, matches published versio
A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model
We argue that topological matrix models (matrix models of the Kontsevich
type) are examples of exact open/closed duality. The duality works at finite N
and for generic `t Hooft couplings. We consider in detail the paradigm of the
Kontsevich model for two-dimensional topological gravity. We demonstrate that
the Kontsevich model arises by topological localization of cubic open string
field theory on N stable branes. Our analysis is based on standard worldsheet
methods in the context of non-critical bosonic string theory. The stable branes
have Neumann (FZZT) boundary conditions in the Liouville direction. Several
generalizations are possible.Comment: v2: References added; a new section with generalization to non-zero
bulk cosmological constant; expanded discussion on topological localization;
added some comment
Brain functional connectivity alterations associated with neuropsychological performance 6-9 months following SARS-CoV-2 infection.
Neuropsychological deficits and brain damage following SARS-CoV-2 infection are not well understood. Then, 116 patients, with either severe, moderate, or mild disease in the acute phase underwent neuropsychological and olfactory tests, as well as completed psychiatric and respiratory questionnaires at 223 ± 42 days postinfection. Additionally, a subgroup of 50 patients underwent functional magnetic resonance imaging. Patients in the severe group displayed poorer verbal episodic memory performances, and moderate patients had reduced mental flexibility. Neuroimaging revealed patterns of hypofunctional and hyperfunctional connectivities in severe patients, while only hyperconnectivity patterns were observed for moderate. The default mode, somatosensory, dorsal attention, subcortical, and cerebellar networks were implicated. Partial least squares correlations analysis confirmed specific association between memory, executive functions performances and brain functional connectivity. The severity of the infection in the acute phase is a predictor of neuropsychological performance 6-9 months following SARS-CoV-2 infection. SARS-CoV-2 infection causes long-term memory and executive dysfunctions, related to large-scale functional brain connectivity alterations
Entanglement, Bell Inequalities and Decoherence in Particle Physics
We demonstrate the relevance of entanglement, Bell inequalities and
decoherence in particle physics. In particular, we study in detail the features
of the ``strange'' system as an example of entangled
meson--antimeson systems. The analogies and differences to entangled spin--1/2
or photon systems are worked, the effects of a unitary time evolution of the
meson system is demonstrated explicitly. After an introduction we present
several types of Bell inequalities and show a remarkable connection to CP
violation. We investigate the stability of entangled quantum systems pursuing
the question how possible decoherence might arise due to the interaction of the
system with its ``environment''. The decoherence is strikingly connected to the
entanglement loss of common entanglement measures. Finally, some outlook of the
field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids,
42. Internationale Universit\"atswochen f\"ur Theoretische Physik,
Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in
Physics, Springer Verlag, 45 page
- …