30,049 research outputs found

    A Poem For Ahab

    Get PDF

    Modeling human learning involved in car driving

    Get PDF
    In this paper, car driving is considered at the level of human tracking and maneuvering in the context of other traffic. A model analysis revealed the most salient features determining driving performance and safety. Learning car driving is modelled based on a system theoretical approach and based on a neural network approach. The aim of this research is to assess the relative merit of both approaches to describe human learning behavior in car driving specifically and in operating dynamic systems in general

    Addition of nucleophiles to alkyldicyanamides

    Get PDF

    The Weir

    Get PDF

    Model analysis of adaptive car driving behavior

    Get PDF
    This paper deals with two modeling approaches to car driving. The first one is a system theoretic approach to describe adaptive human driving behavior. The second approach utilizes neural networks. As an illustrative example the overtaking task is considered and modeled in system theoretic terms. Model results are used to teach a neural network. The results show that a neural network is able to learn this task even when certain task variables change. The next step is to perform an experiment with real human operators in order to assess the validity of both modeling approaches and their relative meri

    Self-gravitating Brownian particles in two dimensions: the case of N=2 particles

    Full text link
    We study the motion of N=2 overdamped Brownian particles in gravitational interaction in a space of dimension d=2. This is equivalent to the simplified motion of two biological entities interacting via chemotaxis when time delay and degradation of the chemical are ignored. This problem also bears some similarities with the stochastic motion of two point vortices in viscous hydrodynamics [Agullo & Verga, Phys. Rev. E, 63, 056304 (2001)]. We analytically obtain the density probability of finding the particles at a distance r from each other at time t. We also determine the probability that the particles have coalesced and formed a Dirac peak at time t (i.e. the probability that the reduced particle has reached r=0 at time t). Finally, we investigate the variance of the distribution and discuss the proper form of the virial theorem for this system. The reduced particle has a normal diffusion behaviour for small times with a gravity-modified diffusion coefficient =r_0^2+(4k_B/\xi\mu)(T-T_*)t, where k_BT_{*}=Gm_1m_2/2 is a critical temperature, and an anomalous diffusion for large times ~t^(1-T_*/T). As a by-product, our solution also describes the growth of the Dirac peak (condensate) that forms in the post-collapse regime of the Smoluchowski-Poisson system (or Keller-Segel model) for T<T_c=GMm/(4k_B). We find that the saturation of the mass of the condensate to the total mass is algebraic in an infinite domain and exponential in a bounded domain.Comment: Revised version (20/5/2010) accepted for publication in EPJ

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

    Full text link
    Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [Ellis, Haven, Turkington, Nonlin., 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D, 237, 1998 (2008)]. They can provide a small-scale parametrization of 2D turbulence or serve as numerical algorithms to compute maximum entropy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.Comment: 21 pages, 9 figure
    • …
    corecore