26 research outputs found

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the systematic framework of chiral perturbation theory by computing the isovector spin-orbit terms: (∇⃗ρp−∇⃗ρn)⋅(J⃗p−J⃗n)Gso(kf)+(J⃗p−J⃗n)2GJ(kf)(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so}(k_f)+ (\vec J_p-\vec J_n)^2 G_J(k_f). The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a good equation of state of isospin-symmetric nuclear matter. We find that the parameterfree results for the (density-dependent) strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) agree fairly well with that of phenomenological Skyrme forces for densities ρ>ρ0/10\rho > \rho_0/10. At very low densities a strong variation of the strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) with density sets in. This has to do with chiral singularities mπ−1m_\pi^{-1} and the presence of two competing small mass scales kfk_f and mπm_\pi. The novel density dependencies of Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) as predicted by our parameterfree (leading order) calculation should be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the framework of chiral perturbation theory by computing the isovector surface and spin-orbit terms: (\vec \nabla \rho_p- \vec \nabla \rho_n)^2 G_d(\rho)+ (\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so(\rho)+(\vec J_p-\vec J_n)^2 G_J(\rho) pertaining to different proton and neutron densities. Our calculation treats systematically the effects from 1π1\pi-exchange, iterated 1π1\pi-exchange, and irreducible 2π2\pi-exchange with intermediate Δ\Delta-isobar excitations, including Pauli-blocking corrections up to three-loop order. Using an improved density-matrix expansion, we obtain results for the strength functions Gd(ρ)G_d(\rho), Gso(ρ)G_{so}(\rho) and GJ(ρ)G_J(\rho) which are considerably larger than those of phenomenological Skyrme forces. These (parameter-free) predictions for the strength of the isovector surface and spin-orbit terms as provided by the long-range pion-exchange dynamics in the nuclear medium should be examined in nuclear structure calculations at large neutron excess.Comment: 12 pages, 5 figure

    Overview of the JET results in support to ITER

    Get PDF
    corecore