16 research outputs found
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
UHECR as Decay Products of Heavy Relics? The Lifetime Problem
The essential features underlying the top-down scenarii for UHECR are
discussed, namely, the stability (or lifetime) imposed to the heavy objects
(particles) whatever they be: topological and non-topological solitons,
X-particles, cosmic defects, microscopic black-holes, fundamental strings. We
provide an unified formula for the quantum decay rate of all these objects as
well as the particle decays in the standard model. The key point in the
top-down scenarii is the necessity to adjust the lifetime of the heavy object
to the age of the universe. This ad-hoc requirement needs a very high
dimensional operator to govern its decay and/or an extremely small coupling
constant. The natural lifetimes of such heavy objects are, however, microscopic
times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is
at this energy scale (by the end of inflation) where they could have been
abundantly formed in the early universe and it seems natural that they decayed
shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio
Measurement of a small atmospheric ratio
From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900
muon-like and 983 electron-like single-ring atmospheric neutrino interactions
were detected with momentum MeV/, MeV/, and
with visible energy less than 1.33 GeV. Using a detailed Monte Carlo
simulation, the ratio was measured to be , consistent with previous results from the
Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from
theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure
Inverse Power Law Quintessence with Non-Tracking Initial Conditions
A common property of popular models of quintessence dark energy is the
convergence to a common solution from a large range of the initial conditions.
We re-examine the popular inverse power-law model of quintessence (where the
common solution is dubbed as the 'tracker') with particular attention to the
initial conditions for the field and their influence on the evolution. We find
that previously derived limits on the parameters of the potential in this model
are valid only in a range of initial conditions. A reasonably sharp boundary
lies where the initial energy density of the scalar field is equal to that of
the background radiation component. An initial quintessence energy density
above this equipartition value lead to a solution that will not have joined the
tracker solution by the present epoch. These non-tracker solutions possess the
property that their present equation of state is very compatible with the
observed bounds and independent of the exponent of the potential.Comment: RevTEX4, 9 figure
