35 research outputs found

    Recent advances upper gastrointestinal lymphomas: molecular updates and diagnostic implications.

    Get PDF
    Approximately one-third of extranodal non-Hodgkin lymphomas involve the gastrointestinal (GI) tract, with the vast majority being diagnosed in the stomach, duodenum, or proximal small intestine. A few entities, especially diffuse large B-cell lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue, represent the majority of cases. In addition, there are diseases specific to or characteristic of the GI tract, and any type of systemic lymphoma can present in or disseminate to these organs. The recent advances in the genetic and molecular characterisation of lymphoid neoplasms have translated into notable changes in the classification of primary GI T-cell neoplasms and the recommended diagnostic approach to aggressive B-cell tumours. In many instances, diagnoses rely on morphology and immunophenotype, but there is an increasing need to incorporate molecular genetic markers. Moreover, it is also important to take into consideration the endoscopic and clinical presentations. This review gives an update on the most recent developments in the pathology and molecular pathology of upper GI lymphoproliferative diseases

    Lymphatic vessel density is associated with CD8<sup>+</sup> T cell infiltration and immunosuppressive factors in human melanoma.

    Get PDF
    Increased density of tumor-associated lymphatic vessels correlates with poor patient survival in melanoma and other cancers, yet lymphatic drainage is essential for initiating an immune response. Here we asked whether and how lymphatic vessel density (LVD) correlates with immune cell infiltration in primary tumors and lymph nodes (LNs) from patients with cutaneous melanoma. Using immunohistochemistry and quantitative image analysis, we found significant positive correlations between LVD and CD8 &lt;sup&gt;+&lt;/sup&gt; T cell infiltration as well as expression of the immunosuppressive molecules inducible nitric oxide synthase (iNOS) and 2,3-dioxygénase (IDO). Interestingly, similar associations were seen in tumor-free LNs adjacent to metastatic ones, indicating loco-regional effects of tumors. Our data suggest that lymphatic vessels play multiple roles at tumor sites and LNs, promoting both T cell infiltration and adaptive immunosuppressive mechanisms. Lymph vessel associated T cell infiltration may increase immunotherapy success rates provided that the treatment overcomes adaptive immune resistance

    Recent advances upper gastrointestinal lymphomas: molecular updates and diagnostic implications

    No full text
    Approximately one-third of extranodal non-Hodgkin lymphomas involve the gastrointestinal (GI) tract, with the vast majority being diagnosed in the stomach, duodenum, or proximal small intestine. A few entities, especially diffuse large B-cell lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue, represent the majority of cases. In addition, there are diseases specific to or characteristic of the GI tract, and any type of systemic lymphoma can present in or disseminate to these organs. The recent advances in the genetic and molecular characterisation of lymphoid neoplasms have translated into notable changes in the classification of primary GI T-cell neoplasms and the recommended diagnostic approach to aggressive B-cell tumours. In many instances, diagnoses rely on morphology and immunophenotype, but there is an increasing need to incorporate molecular genetic markers. Moreover, it is also important to take into consideration the endoscopic and clinical presentations. This review gives an update on the most recent developments in the pathology and molecular pathology of upper GI lymphoproliferative diseases. © 2020 John Wiley &amp; Sons Lt

    Neoantigen-based cancer immunotherapy

    No full text
    Emerging clinical evidence on the role of the antitumor activity of the immune system has generated great interest in immunotherapy in all cancer types. Recent clinical data clearly demonstrated that human tumor cells express antigenic peptides (epitopes) that can be recognized by autologous tumor-specific T cells and that enhancement of such immune reactivity can potentially lead to cancer control and cancer regression in patients with advanced disease. However, in most cases, it is unclear which tumor antigens (Ags) mediated cancer regression. Mounting evidence indicates that numerous endogenous mutated cancer proteins, a hallmark of tumor cells, can be processed into peptides and presented on the surface of tumor cells, leading to their immune recognition in vivo as &quot;non-self&quot; or foreign. Massively parallel sequencing has now overcome the challenge of rapidly identifying the comprehensive mutational spectrum of individual tumors (i.e., the &quot;mutanome&quot;) and current technologies, as well as computational tools, have emerged that allow the identification of private epitopes derived from their mutanome and called neoantigens (neoAgs). On this basis, both CD4+ and CD8+ neoantigen-specific T cells have been identified in multiple human cancers and shown to be associated with a favorable clinical outcome. Notably, emerging data also indicate that neoantigen recognition represents a major factor in the activity of clinical immunotherapies. In the post-genome era, the mutanome holds promise as a long-awaited &apos;gold mine&apos; for the discovery of unique cancer cell targets, which are exclusively tumor-specific and unlikely to drive immune tolerance, hence offering the chance for highly promising clinical programs of cancer immunotherapy. © Annals of Translational Medicine

    Neoantigen-based cancer immunotherapy.

    No full text
    Emerging clinical evidence on the role of the antitumor activity of the immune system has generated great interest in immunotherapy in all cancer types. Recent clinical data clearly demonstrated that human tumor cells express antigenic peptides (epitopes) that can be recognized by autologous tumor-specific T cells and that enhancement of such immune reactivity can potentially lead to cancer control and cancer regression in patients with advanced disease. However, in most cases, it is unclear which tumor antigens (Ags) mediated cancer regression. Mounting evidence indicates that numerous endogenous mutated cancer proteins, a hallmark of tumor cells, can be processed into peptides and presented on the surface of tumor cells, leading to their immune recognition in vivo as "non-self" or foreign. Massively parallel sequencing has now overcome the challenge of rapidly identifying the comprehensive mutational spectrum of individual tumors (i.e., the "mutanome") and current technologies, as well as computational tools, have emerged that allow the identification of private epitopes derived from their mutanome and called neoantigens (neoAgs). On this basis, both CD4(+) and CD8(+) neoantigen-specific T cells have been identified in multiple human cancers and shown to be associated with a favorable clinical outcome. Notably, emerging data also indicate that neoantigen recognition represents a major factor in the activity of clinical immunotherapies. In the post-genome era, the mutanome holds promise as a long-awaited 'gold mine' for the discovery of unique cancer cell targets, which are exclusively tumor-specific and unlikely to drive immune tolerance, hence offering the chance for highly promising clinical programs of cancer immunotherapy

    Atypical patterns of responses in the era of immune checkpoint inhibitors in head and neck cancer

    No full text
    The discovery and implementation into everyday clinical practice of immune checkpoint inhibitors (ICIs) has marked a therapeutic renaissance in the treatment of advanced solid tumors. In head and neck cancer, nivolumab and pembrolizumab have both been approved for recurrent/metastatic disease based on robust clinical activity observed in landmark phase III clinical trials. Despite tremendous improvements in overall survival, patterns of response and progression to ICIs may be distinct from those traditionally described with classical chemotherapy or molecularly targeted therapies. In this context, pseudoprogression is observed in patients treated with ICIs that show response after a transient increase in tumor burden and hyperprogression is described as rapid radiological or clinical progression after immunotherapy. Most importantly, the assessment of radiological response in patients receiving ICIs needs to be differentiated. In this review, we aim to describe radiologic criteria for immune response evaluation and illustrate the newly reported concepts of atypical patterns of response to ICIs. © 201

    Biomarkers for immunotherapy response in head and neck cancer

    No full text
    Preclinical data suggest that head and neck squamous cell carcinoma (HNSCC) is a profoundly immunosuppressive disease, characterized by abnormal secretion of proinflammatory cytokines and dysfunction of immune effector cells. Based on landmark phase III trials, two anti-Programmed Cell Death-1 (PD-1) antibodies, pembrolizumab and nivolumab have been approved for HNSCC by FDA and EMEA in the recurrent/metastatic setting; in addition, pembrolizumab has recently received FDA and EMEA approval as first line treatment. In clinical practice, only a minority of patients with HNSCC derive benefit from immunotherapy and the need for the discovery of novel biomarkers to optimize treatment strategies is becoming increasingly more relevant. Although currently only PD-L1 is widely used as a predictive biomarker for response to immune checkpoint inhibitors in HNSCC, there are many ongoing trials focusing on the identification of new biomarkers. This review will summarize current data on emerging biomarkers for response to immunotherapy in HNSCC. © 2020 Elsevier Lt

    Oral lichen planus as a preneoplastic inflammatory model

    No full text
    Oral lichen planus (OLP) is a chronic oral inflammatory disease of unknown etiology. According to reports, 1-2 of OLP patients develop oral squamous cell carcinoma (OSCC) in the long run. While World Health Organization (WHO) classifies OLP as a potentially malignant disorder, it is still a matter of debate which mechanisms drive OLP to such a condition. The current hypothesis connecting OLP and OSCC is that chronic inflammation results in crucial DNA damage which over time results in cancer development. Initial studies investigating the OLP and OSCC link were mainly retrospective clinical studies. Over the past years, several amount of information has accumulated, mainly from molecular studies on the OLP malignant potential. This article is a critical review of whether OLP has a malignant potential and, therefore, represents a model of preneoplastic inflammation. Copyright © 2012 Eleni A. Georgakopoulou et al

    Identification of melanoma cells and lymphocyte subpopulations in lymph node metastases by FTIR imaging histopathology.

    No full text
    While early stages of melanoma are usually cured by surgery, metastatic melanomas are difficult to treat because the widely available options have low response rates. Careful and precise diagnosis and staging are essential to determine patient's risk and to select appropriate treatments. Fortunately, the recent progress in immunotherapy is very encouraging. In this context, it is important to characterize the intratumoral infiltration of immune cells in each patient, which is however not done routinely due to the lack of standardized methods. In this study, we used Fourier transform infrared (FTIR) imaging combined with multivariate statistical analyses to investigate non-metastatic and metastatic lymph nodes from melanoma patients. Our results show that the different cell types have different infrared spectral features allowing automated identification of these cell types. High recognition rates were obtained using a supervised partial least square discriminant analysis (PLS-DA) model. Melanoma cells were recognized with 87.1% sensitivity and 85.7% specificity, showing that FTIR spectroscopy has similar detection power as immunohistochemistry. Besides, FTIR imaging could also distinguish lymphocyte subpopulations (B and T cells). Finally, we investigated the changes in lymphocytes due to the presence of metastases. Interestingly, specific features of spectra of lymphocytes present in metastatic or tumor-free lymph nodes could be evidenced by PCA. A PLS-DA model was capable of predicting whether lymphocytes originated from invaded or non-invaded lymph nodes. These data demonstrate that FTIR imaging is capable to distinguish known and also novel biological features in human tissues, with potential practical relevance for histopathological diagnosis and biomarker assessment
    corecore