528 research outputs found
The critical role of ants in the extensive dispersal of Acacia seeds revealed by genetic parentage assignment
Ants are prominent seed dispersal agents in many ecosystems, and dispersal distances are small in comparison with vertebrate dispersal agents. However, the distance and distribution of ant-mediated dispersal in arid/semi-arid environments remains poorly explored. We used microsatellite markers and parentage assignment to quantify the distance and distribution of dispersed seeds of Acacia karina, retrieved from the middens of Iridomyrmex agilis and Melophorus turneri perthensis. From parentage assignment, we could not distinguish the maternal from each parent pair assigned to each seed, so we applied two approaches to estimate dispersal distances, one conservative (CONS), where the parent closest to the ant midden was considered to be maternal, and the second where both parents were deemed equally likely (EL) to be maternal, and used both distances. Parentage was assigned to 124 seeds from eight middens. Maximum seed dispersal distances detected were 417 m (CONS) and 423 m (EL), more than double the estimated global maximum. Mean seed dispersal distances of 40 m (±5.8 SE) (CONS) and 79 m (±6.4 SE) (EL) exceeded the published global average of 2.24 m (±7.19 SD) by at least one order of magnitude. For both approaches and both ant species, seed dispersal was predominantly (44–84 % of all seeds) within 50 m from the maternal source, with fewer dispersal events at longer distances. Ants in this semi-arid environment have demonstrated a greater capacity to disperse seeds than estimated elsewhere, which highlights their important role in this system, and suggests significant novel ecological and evolutionary consequences for myrmecochorous species in arid/semi-arid Australia
The Flux-Phase of the Half-Filled Band
The conjecture is verified that the optimum, energy minimizing magnetic flux
for a half-filled band of electrons hopping on a planar, bipartite graph is
per square plaquette. We require {\it only} that the graph has
periodicity in one direction and the result includes the hexagonal lattice
(with flux 0 per hexagon) as a special case. The theorem goes beyond previous
conjectures in several ways: (1) It does not assume, a-priori, that all
plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type
on-site interaction of any sign, as well as certain longer range interactions,
can be included; (3) The conclusion holds for positive temperature as well as
the ground state; (4) The results hold in dimensions if there is
periodicity in directions (e.g., the cubic lattice has the lowest energy
if there is flux in each square face).Comment: 9 pages, EHL14/Aug/9
Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations
Eutrophication and anoxia are unresolved issues in many large waterbodies. Globally, management success has been inconsistent, highlighting the need to identify approaches which reliably improve water quality. We used a process-based model chain to quantify effectiveness of terrestrial nutrient control measures on in-lake nitrogen, phosphorus, chlorophyll and dissolved oxygen (DO) concentrations in Lake Simcoe, Canada. Across a baseline period of 2010–2016 hydrochemical outputs from catchment models INCA-N and INCA-P were used to drive the lake model PROTECH, which simulated water quality in the three main basins of the lake. Five terrestrial nutrient control strategies were evaluated. Effectiveness differed between catchments, and water quality responses to nutrient load reductions varied between deep and shallow lake basins. Nutrient load reductions were a significant driver of increased DO concentrations, however strategies which reduced tributary inflow had a greater impact on lake restoration, associated with changes in water temperature and chemistry. Importantly, when multiple strategies were implemented simultaneously, resultant large flow reductions induced warming throughout the water column. Negative impacts of lake warming on DO overwhelmed the positive effects of nutrient reduction, and limited the effectiveness of lake restoration strategies. This study indicates that rates of lake recovery may be accelerated through a coordinated management approach, which considers strategy interactions, and the potential for temperature change-induced physical and biological feedbacks. Identified impacts of flow and temperature on rates of lake recovery have implications for management sustainability under a changing climate
Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions
We prove strong convergence of conforming finite element approximations to
the stationary Joule heating problem with mixed boundary conditions on
Lipschitz domains in three spatial dimensions. We show optimal global
regularity estimates on creased domains and prove a priori and a posteriori
bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error
analysis, a priori error analysis, finite element metho
Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012
We describe an Australia-wide Clostridium difficile outbreak in 2011 and 2012 involving the previously uncommon ribotype 244. In Western Australia, 14 of 25 cases were community-associated, 11 were detected in patients younger than 65 years, 14 presented to emergency/outpatient departments, and 14 to non-tertiary/community hospitals. Using whole genome sequencing, we confirm ribotype 244 is from the same C. difficile clade as the epidemic ribotype 027. Like ribotype 027, it produces toxins A, B, and binary toxin, however it is fluoroquinolone-susceptible and thousands of single nucleotide variants distinct from ribotype 027. Fifteen outbreak isolates from across Australia were sequenced. Despite their geographic separation, all were genetically highly related without evidence of geographic clustering, consistent with a point source, for example affecting the national food chain. Comparison with reference laboratory strains revealed the outbreak clone shared a common ancestor with isolates from the United States and United Kingdom (UK). A strain obtained in the UK was phylogenetically related to our outbreak. Follow-up of that case revealed the patient had recently returned from Australia. Our data demonstrate new C. difficile strains are an on-going threat, with potential for rapid spread. Active surveillance is needed to identify and control emerging lineages
The Origins of Bagan: The archaeological landscape of Upper Burma to AD 1300.
The archaeological landscape of Upper Burma from the middle of the first millennium BC to the Bagan period in the 13th-14th century AD is a landscape of continuity. Finds of polished stone and bronze artifacts suggest the existence of early metal-using cultures in the Chindwin and Samon River Valleys, and along parts of the Ayeyarwady plain. Increasing technological and settlement complexity in the Samon Valley suggests that a distinctive culture whose agricultural and trade success can be read in the archaeological record of the Late Prehistoric period developed there. The appearance of the early urban "Pyu" system of walled central places during the early first millennium AD seems to have involved a spread of agricultural and management skills and population from the Samon. The leaders of the urban centres adopted Indic symbols and Sanskrit modes of kingship to enhance and extend their authority. The early urban system was subject over time to a range of stresses including siltation of water systems, external disruption and social changes as Buddhist notions of leadership eclipsed Brahmanical ones. The archaeological evidence indicates that a settlement was forming at Bagan during the last centuries of the first millennium AD. By the mid 11th century Bagan began to dominate Upper Burma, and the region began a transition from a system of largely autonomous city states to a centralised kingdom. Inscriptions of the 11th to 13th centuries indicate that as the Bagan Empire expanded it subsumed the agricultural lands that had been developed by the Pyu
Spin relaxation: From 2D to 1D
In inversion asymmetric semiconductors, spin-orbit interactions give rise to
very effective relaxation mechanisms of the electron spin. Recent work, based
on the dimensionally constrained D'yakonov Perel' mechanism, describes
increasing electron-spin relaxation times for two-dimensional conducting layers
with decreasing channel width. The slow-down of the spin relaxation can be
understood as a precursor of the one-dimensional limit
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Recurrence and Survival after Minimally Invasive and Open Esophagectomy for Esophageal Cancer: A Post Hoc Analysis of the Ensure Study
Objective: To determine the impact of operative approach [open (OE), hybrid minimally invasive (HMIE), and total minimally invasive (TMIE) esophagectomy] on operative and oncologic outcomes for patients treated with curative intent for esophageal and junctional cancer. Background: The optimum oncologic surgical approach to esophageal and junctional cancer is unclear. Methods: This secondary analysis of the European multicenter ENSURE study includes patients undergoing curative-intent esophagectomy for cancer between 2009 and 2015 across 20 high-volume centers. Primary endpoints were disease-free survival (DFS) and the incidence and location of disease recurrence. Secondary endpoints included among others R0 resection rate, lymph node yield, and overall survival (OS). Results: In total, 3199 patients were included. Of these, 55% underwent OE, 17% HMIE, and 29% TMIE. DFS was independently increased post-TMIE [hazard ratio (HR): 0.86 (95% CI: 0.76-0.98), P = 0.022] compared with OE. Multivariable regression demonstrated no difference in absolute locoregional recurrence risk according to the operative approach [HMIE vs OE, odds ratio (OR): 0.79, P = 0.257; TMIE vs OE, OR: 0.84, P = 0.243]. The probability of systemic recurrence was independently increased post-HMIE (OR: 2.07, P = 0.031), but not TMIE (OR: 0.86, P = 0.508). R0 resection rates (P = 0.005) and nodal yield (P < 0.001) were independently increased after TMIE, but not HMIE (P = 0.424; P = 0.512) compared with OE. OS was independently improved following both HMIE (HR: 0.79, P = 0.009) and TMIE (HR: 0.82, P = 0.003) as compared with OE. Conclusion: In this European multicenter study, TMIE was associated with improved surgical quality and DFS, whereas both TMIE and HMIE were associated with improved OS as compared with OE for esophageal cancer
- …