37 research outputs found

    A VALUE PLATFORM ANALYSIS PERSPECTIVE ON CUSTOMER ACCESS INFORMATION TECHNOLOGY

    Get PDF
    Customer access information technologies (CAITs) provide a link between a firm and its customers. Firms invest in CAITs to reduce costs, increase revenues and market share, lock in existing customers and capture new ones. These benefits, however, are notoriously difficult to measure. This paper proposes an evaluative method for CAlT deployment called value platform analysis, that is based on a conceptual model drawn from the theory of retail outlet deployment in marketing science. The model focuses on the impact of CAIT features and environmental features on transactions generated by the CAIT. Specific econometric models are developed for deployment. Hypotheses regarding the likely impact of automated teller machine (ATM) location design choices and environmental features on ATM transactions are evaluated. The results indicate that there are a number of key features influencing ATM performance. Two distinct ATM deployment scenarios emerge: one for servicing a bank's own customers, and another for providing transaction services for customers for a fee.Information Systems Working Papers Serie

    Broad-scale patterns of body size in squamate reptiles of Europe and North America

    Full text link
    Aim To document geographical interspecific patterns of body size of European and North American squamate reptile assemblages and explore the relationship between body size patterns and environmental gradients. Location North America and western Europe. Methods We processed distribution maps for native species of squamate reptiles to document interspecific spatial variation of body size at a grain size of 110 x 110 km. We also examined seven environmental variables linked to four hypotheses possibly influencing body size gradients. We used simple and multiple regression, evaluated using information theory, to identify the set of models best supported by the data. Results Europe is characterized by clear latitudinal trends in body size, whereas geographical variation in body size in North America is complex. There is a consistent association of mean body size with measures of ambient energy in both regions, although lizards increase in size northwards whereas snakes show the opposite pattern. Our best models accounted for almost 60% of the variation in body size of lizards and snakes within Europe, but the proportions of variance explained in North America were less than 20%. Main conclusions Although body size influences the energy balance of thermoregulating ectotherms, inconsistent biogeographical patterns and contrasting associations with energy in lizards and snakes suggest that no single mechanism can explain variation of reptile body size in the northern temperate zone

    Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    No full text
    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate a staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. This paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed
    corecore