13 research outputs found

    iPSC-derived neurons of CREBBP- and EP300-mutated Rubinstein-Taybi syndrome patients show morphological alterations and hypoexcitability

    Get PDF
    Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder characterized by distinctive facial features, growth retardation, broad thumbs and toes and mild to severe intellectual disability, caused by heterozygous mutations in either CREBBP or EP300 genes, encoding the homologous CBP and p300 lysine-acetyltransferases and transcriptional coactivators. No RSTS in vitro induced Pluripotent Stem Cell (iPSC)-neuronal model is available yet to achieve mechanistic insights on cognitive impairment of RSTS patients. We established iPSC-derived neurons (i-neurons) from peripheral blood cells of three CREBBP- and two EP300-mutated patients displaying different levels of intellectual disability, and four unaffected controls. Pan neuronal and cortical-specific markers were expressed by all patients' i-neurons. Altered morphology of patients' differentiating neurons, showing reduced branch length and increased branch number, and hypoexcitability of differentiated neurons emerged as potential disease biomarkers. Anomalous neuronal morphology and reduced excitability varied across different RSTS patients' i-neurons. Further studies are needed to validate these markers and assess whether they reflect cognitive and behavioural impairment of the donor patients

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    Klinefelter Syndrome in Preschool Children: The Importance of an Early Multidisciplinary Approach for Patients and Families

    No full text
    BACKGROUND: The aim of this study is twofolded: to present a multi-disciplinary and multi-centric approach in the early care of patients with Klinefelter Syndrome (KS) and their families and to increase the knowledge about the behavioral phenotype of preschool boys with KS. METHODS: Fifteen boys (mean age 2 years and 7 months) who had been diagnosed prenatally were evaluated in the areas of adaptive skills, developmental level, language, and behavior. Besides offering information about their child, both parents of each couple were asked to describe their feelings at the time of the prenatal diagnosis and at the time of the study. RESULTS: The behavioral phenotype of the boys of our sample was characterized by a mean Developmental Quotient of 95 (in the normal range) but by low scores in the domain of communication, particularly in the area of expressive language. Behavioral problems were observed in some of the children, and the parents reported significant levels of distress related to their relationship with the child. All parents recalled feeling very anxious when the diagnosis was given, but nine of them (75%) said their concern diminished after receiving genetic counselling. CONCLUSIONS: a multi-disciplinary model is essential in the care of 47,XXY boys and in the assistance to their families, in order both to facilitate the children's growth and offer to the parents updated clinical and psychosocial information about the Klinefelter Syndrome and support

    Rubinstein–Taybi syndrome : New neuroradiological and neuropsychiatric insights from a multidisciplinary approach

    No full text
    Rubinstein\u2013Taybi syndrome is a rare, autosomal dominant, plurimalformative disorder that is clinically characterized by intellectual disability and a wide spectrum of congenital anomalies; facial dysmorphisms are typical, and broad thumbs and great toes are particularly distinctive. Its genetic basis is only partially known, with a detection rate of approximately 65\u201370%; specifically, microdeletions or mutations in the CREBBP or EP300 genes can be found. Much is known about its clinical features and health-care protocols, but some areas of clinical knowledge are currently unsolved. In particular, few efforts have been made until now to understand the variability in the neuropsychological and neurobehavioral profile and to deepen knowledge of the neuroradiological malformative pattern. Consequently, little is known about the possible genotype-phenotype correlations of these issues. Here, we report clinical and genetic data from a cohort of 23 RSTS Italian patients. The most common features in brain magnetic resonance imaging (MRI) were dysmorphic aspects of the corpus callosum (73.6%) with or without minor dysmorphisms of cerebellar vermis, periventricular posterior white matter hyperintensity, and other less common anomalies. The most interesting feature on the whole spine MRI scans was the tendency for a low-lying conus medullaris without terminal filum thickening. These data will help to improve neuropsychiatric and neuroradiological knowledge and highlight specific genotype-phenotype correlations

    Electroclinical phenotype in Rubinstein-Taybi syndrome

    No full text
    Objective: Rubinstein-Taybi syndrome (RSTS) is a rare congenital disorder (1:125.000) characterized by growth retardation, psychomotor developmental delay, microcephaly and dysmorphic features. In 25% of patients seizures have been described, and in about 66% a wide range of EEG abnormalities, but studies on neurological features are scant and dated.The aim of this study is to describe the electroclinical phenotype of twenty-three patients with RSTS, and to try to correlate electroclinical features with neuroradiological, cognitive and genetic features. Patients and methods: Electroclinical features of twenty-three patients with RSTS (age between18 months and 20 years) were analyzed. Sleep and awake EEG was performed in twenty-one patients, and brain MRI in nineteen patients. All subjects received cognitive evaluation. Results: EEG abnormalities were observed in 76% (16/21) of patients. A peculiar pattern prevalent in sleep, characterized by slow monomorphic activity on posterior regions was also observed in 33% (7/21) of patients. Almost no patient presented seizures. Eighty-four percentage of patients had brain MRI abnormalities, involving corpus callosum and/or posterior periventricular white matter. Average General Quotient (GQ) was 52, while average IQ was 55, corresponding to mild Intellectual Disability. The homogeneous electroclinical pattern was observed mainly in patients with more severe neuroradiologic findings and moderate Intellectual Disability/Developmental Disability (ID/DD). No genotype-phenotype correlations were found. Conclusion: The specific electroclinical and neuroradiological features described may be part of a characteristic RSTS phenotype. Wider and longitudinal studies are needed to verify its significance and impact on diagnosis, prognosis and clinical management of RSTS patients

    Olfactory Malformations in Mendelian Disorders of the Epigenetic Machinery

    No full text
    Usually overlooked by physicians, olfactory abnormalities are not uncommon. Olfactory malformations have recently been reported in an emerging group of genetic disorders called Mendelian Disorders of the Epigenetic Machinery (MDEM). This study aims to determine the prevalence of olfactory malformations in a heterogeneous group of subjects with MDEM. We reviewed the clinical data of 35 patients, 20 females and 15 males, with a mean age of 9.52 years (SD 4.99). All patients had a MDEM and an already available high-resolution brain MRI scan. Two experienced neuroradiologists reviewed the MR images, noting abnormalities and classifying olfactory malformations. Main findings included Corpus Callosum, Cerebellar vermis, and olfactory defects. The latter were found in 11/35 cases (31.4%), of which 7/11 had Rubinstein-Taybi syndrome (RSTS), 2/11 had CHARGE syndrome, 1/11 had Kleefstra syndrome (KLFS), and 1/11 had Weaver syndrome (WVS). The irregularities mainly concerned the olfactory bulbs and were bilateral in 9/11 patients. With over 30% of our sample having an olfactory malformation, this study reveals a possible new diagnostic marker for MDEM and links the epigenetic machinery to the development of the olfactory bulbs

    A case series of CHARGE syndrome : Identification of key features for a neonatal diagnosis

    No full text
    Background: An early diagnosis of CHARGE syndrome is challenging, especially for the primary care physicians who often take care of neonates with multiple congenital anomalies. Here we report eight cases of CHARGE syndrome whose diagnosis was made early in life with the intent to identify the most helpful features allowing a prompt clinical diagnosis. Methods: Medical records of patients with CHARGE syndrome whose diagnosis was made at the Fondazione IRCCS Ca\u2032 Granda Ospedale Maggiore Policlinico in Milan, Italy were retrospectively reviewed. Results: Taken together, these patients reflect the considerable phenotypic variability of the syndrome; in one patient, the diagnosis was made immediately after birth because all the major criteria were met. In six patients, presenting with relatively nonspecific defects, a temporal bone computerized tomography scan was essential to achieve the correct diagnosis. In one patient, the diagnosis was made later than the others were. A careful examination revealed the presence of outer, middle, and inner ear anomalies: These elements, in the absence of any additional major criteria, represented for us an important diagnostic clue. Conclusions: This article suggests that an accurate evaluation of the ear should be made every time CHARGE syndrome is considered as a likely diagnosis even when the standard criteria are not fulfilled

    Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations

    No full text
    Introduction: Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. Patients and methods: Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. Results: MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. Conclusions: Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified

    Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement

    No full text
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning
    corecore