13 research outputs found

    Transport Properties of Random Walks on Scale-Free/Regular-Lattice Hybrid Networks

    Full text link
    We study numerically the mean access times for random walks on hybrid disordered structures formed by embedding scale-free networks into regular lattices, considering different transition rates for steps across lattice bonds (FF) and across network shortcuts (ff). For fast shortcuts (f/F1f/F\gg 1 ) and low shortcut densities, traversal time data collapse onto an universal curve, while a crossover behavior that can be related to the percolation threshold of the scale-free network component is identified at higher shortcut densities, in analogy to similar observations reported recently in Newman-Watts small-world networks. Furthermore, we observe that random walk traversal times are larger for networks with a higher degree of inhomogeneity in their shortcut distribution, and we discuss access time distributions as functions of the initial and final node degrees. These findings are relevant, in particular, when considering the optimization of existing information networks by the addition of a small number of fast shortcut connections.Comment: 8 pages, 6 figures; expanded discussions, added figures and references. To appear in J Stat Phy

    Anisotropic thermally activated diffusion in percolation systems

    Full text link
    We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transition rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-dependent diffusion coefficients we calculate a characteristic frequency ωc1/tc\omega_{c}\sim 1/t_{c}, related to the time tct_c needed to overcome a characteristic barrier. We find that ωc\omega_c follows an Arrhenius behavior with different activation energies in each direction.Comment: 5 pages, 4 figure

    Anderson localization of polaron states

    Full text link
    Using the vanishing of the typical polaron tunneling rate as an indicator of the breakdown of itinerancy, we study the localization of polaron states in a generic model for a disordered polaronic material. We find that extremely small disorder causes an Anderson localization of small polaron states. However, the ratio between the critical disorder strength needed to localize all states in the polaron band and the renormalized bandwidth is not necessarily smaller than for a bare electron.Comment: 4 pages, 3 figure

    Biased diffusion in a piecewise linear random potential

    Full text link
    We study the biased diffusion of particles moving in one direction under the action of a constant force in the presence of a piecewise linear random potential. Using the overdamped equation of motion, we represent the first and second moments of the particle position as inverse Laplace transforms. By applying to these transforms the ordinary and the modified Tauberian theorem, we determine the short- and long-time behavior of the mean-square displacement of particles. Our results show that while at short times the biased diffusion is always ballistic, at long times it can be either normal or anomalous. We formulate the conditions for normal and anomalous behavior and derive the laws of biased diffusion in both these cases.Comment: 11 pages, 3 figure

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Licófitas e monilófitas das Unidades de Conservação da Usina Hidroelétrica - UHE de Tucuruí, Pará, Brasil

    Full text link

    TUNNELING AT LOW TEMPERATURES IN CONDENSED MEDIA

    No full text
    Tunneling processes at low temperatures in condensed phases have been under intense study recently. We examine the interplay between vibrational relaxation and transport in the low temperature dynamics of quasiparticle tunneling in a double well potential. We find that at sufficiently low temperatures, the description of the dynamics strongly resembles that of a multi-site spin jump model
    corecore