20 research outputs found

    Scaling and the prediction of energy spectra in decaying hydrodynamic turbulence

    Full text link
    Few rigorous results are derived for fully developed turbulence. By applying the scaling properties of the Navier-Stokes equation we have derived a relation for the energy spectrum valid for unforced or decaying isotropic turbulence. We find the existence of a scaling function ψ\psi. The energy spectrum can at any time by a suitable rescaling be mapped onto this function. This indicates that the initial (primordial) energy spectrum is in principle retained in the energy spectrum observed at any later time, and the principle of permanence of large eddies is derived. The result can be seen as a restoration of the determinism of the Navier-Stokes equation in the mean. We compare our results with a windtunnel experiment and find good agreement.Comment: 4 pages, 1 figur

    Probability distribution function for systems driven by superheavy-tailed noise

    Full text link
    We develop a general approach for studying the cumulative probability distribution function of localized objects (particles) whose dynamics is governed by the first-order Langevin equation driven by superheavy-tailed noise. Solving the corresponding Fokker-Planck equation, we show that due to this noise the distribution function can be divided into two different parts describing the surviving and absorbing states of particles. These states and the role of superheavy-tailed noise are studied in detail using the theory of slowly varying functions.Comment: 9 page

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
    corecore