32 research outputs found

    Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model

    Full text link
    The random fiber bundle (RFB) model, with the strength of the fibers distributed uniformly within a finite interval, is studied under the assumption of global load sharing among all unbroken fibers of the bundle. At any fixed value of the applied stress (load per fiber initially present in the bundle), the fraction of fibers that remain unbroken at successive time steps is shown to follow simple recurrence relations. The model is found to have stable fixed point for applied stress in the range 0 and 1; beyond which total failure of the bundle takes place discontinuously. The dynamic critical behavior near this failure point has been studied for this model analysing the recurrence relations. We also investigated the finite size scaling behavior. At the critical point one finds strict power law decay (with time t) of the fraction of unbroken fibers. The avalanche size distribution for this mean-field dynamics of failure has been studied. The elastic response of the RFB model has also been studied analytically for a specific probability distribution of fiber strengths, where the bundle shows plastic behavior before complete failure, following an initial linear response.Comment: 13 pages, 5 figures, extensively revised and accepted for publication in Phys. Rev.

    Precursors of catastrophe in the BTW, Manna and random fiber bundle models of failure

    Full text link
    We have studied precursors of the global failure in some self-organised critical models of sand-pile (in BTW and Manna models) and in the random fiber bundle model (RFB). In both BTW and Manna model, as one adds a small but fixed number of sand grains (heights) to any central site of the stable pile, the local dynamics starts and continues for an average relaxation time (\tau) and an average number of topplings (\Delta) spread over a radial distance (\xi). We find that these quantities all depend on the average height (h_{av}) of the pile and they all diverge as (h_{av}) approaches the critical height (h_{c}) from below: (\Delta) (\sim (h_{c}-h_{av}))(^{-\delta}), (\tau \sim (h_{c}-h_{av})^{-\gamma}) and (\xi) (\sim) ((h_{c}-h_{av})^{-\nu}). Numerically we find (\delta \simeq 2.0), (\gamma \simeq 1.2) and (\nu \simeq 1.0) for both BTW and Manna model in two dimensions. In the strained RFB model we find that the breakdown susceptibility (\chi) (giving the differential increment of the number of broken fibers due to increase in external load) and the relaxation time (\tau), both diverge as the applied load or stress (\sigma) approaches the network failure threshold (\sigma_{c}) from below: (\chi) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}) and (\tau) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}). These self-organised dynamical models of failure therefore show some definite precursors with robust power laws long before the failure point. Such well-characterised precursors should help predicting the global failure point of the systems in advance.Comment: 13 pages, 9 figures (eps

    Failure due to fatigue in fiber bundles and solids

    Get PDF
    We consider first a homogeneous fiber bundle model where all the fibers have got the same stress threshold beyond which all fail simultaneously in absence of noise. At finite noise, the bundle acquires a fatigue behavior due to the noise-induced failure probability at any stress. We solve this dynamics of failure analytically and show that the average failure time of the bundle decreases exponentially as the stress increases. We also determine the avalanche size distribution during such failure and find a power law decay. We compare this fatigue behavior with that obtained phenomenologically for the nucleation of Griffith cracks. Next we study numerically the fatigue behavior of random fiber bundles having simple distributions of individual fiber strengths, at stress less than the bundle's strength (beyond which it fails instantly). The average failure time is again seen to decrease exponentially as the stress increases and the avalanche size distribution shows similar power law decay. These results are also in broad agreement with experimental observations on fatigue in solids. We believe, these observations regarding the failure time are useful for quantum breakdown phenomena in disordered systems.Comment: 13 pages, 4 figures, figures added and the text is revise

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Which mechanism underlies the water-like anomalies in core-softened potentials?

    Full text link
    Using molecular dynamics simulations we investigate the thermodynamic of particles interacting with a continuous and a discrete versions of a core-softened (CS) intermolecular potential composed by a repulsive shoulder. Dynamic and structural properties are also analyzed by the simulations. We show that in the continuous version of the CS potential the density at constant pressure has a maximum for a certain temperature. Similarly the diffusion constant, DD, at a constant temperature has a maximum at a density ρmax\rho_{\mathrm{max}} and a minimum at a density ρmin<ρmax\rho_{\mathrm{min}}<\rho_{\mathrm{max}}, and structural properties are also anomalous. For the discrete CS potential none of these anomalies are observed. The absence of anomalies in the discrete case and its presence in the continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page

    The Casimir Problem of Spherical Dielectrics: Quantum Statistical and Field Theoretical Approaches

    Full text link
    The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel method, which turns out to be quite powerful (we have shown this to be true in other situations also), we consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara frequency (n=0n=0). Thereafter, the time-dependent case is examined. For comparison we consider the calculation of the free energy with use of the more commonly known field theoretical method, assuming for simplicity metallic boundary surfaces.Comment: 31 pages, LaTeX, one new reference; version to appear in Phys. Rev.

    A Simple Model of Liquid-liquid Phase Transitions

    Full text link
    In recent years, a second fluid-fluid phase transition has been reported in several materials at pressures far above the usual liquid-gas phase transition. In this paper, we introduce a new model of this behavior based on the Lennard-Jones interaction with a modification to mimic the different kinds of short-range orientational order in complex materials. We have done Monte Carlo studies of this model that clearly demonstrate the existence of a second first-order fluid-fluid phase transition between high- and low-density liquid phases

    Time evolution of damage under variable ranges of load transfer

    Full text link
    We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the material exhibits a crossover from mean field to short range behavior as in the static case. Numerical calculations showed that the value at which the transition takes place depends on the system's disorder. Finally, we have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of the largest crack is radically different in the two limiting regimes of load transfer during the first stages of breaking.Comment: 8 pages, 7 figures, revtex4 styl

    Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition

    Full text link
    The influence of an external magnetic field on the liquid-gas phase transition in Ising, XY, and Heisenberg spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field dependence of the critical temperature T_c(H) for all the three models. These features include a monotonic decrease of T_c with rising H in the case of the Ising fluid as well as a more complicated nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity consists in a decrease of T_c with increasing H at weak external fields, an increase of T_c with rising H in the strong field regime, and the existence of a minimum in T_c(H) at intermediate values of H. Analytical expressions for T_c(H) in the large field limit are presented as well. The magnetic para-ferro phase transition is also considered in simulations and described within the mean field theory.Comment: 14 pages, 12 figures (to be submitted to Phys. Rev. E

    Fracture model with variable range of interaction

    Full text link
    We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-transfer function which can interpolate between the two limiting cases of load redistribution, the global and the local load sharing schemes. By varying the range of interaction several features of the model are numerically studied and a crossover from mean field to short range behavior is obtained. The properties of the two regimes and the emergence of the crossover in between are explored by numerically studying the dependence of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately determine the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be published in Phys. Rev.
    corecore