23 research outputs found

    Impact of atrial fibrillation on outcome in Takotsubo syndrome: data from the international Takotsubo registry

    Get PDF
    Background Atrial fibrillation (AF) is a major risk factor for mortality. The prevalence, clinical correlates, and prognostic impact of AF in Takotsubo syndrome (TTS) have not yet been investigated in a large patient cohort. This study aimed to investigate the prevalence, clinical correlates, and prognostic impact of AF in patients with TTS. Methods and Results Patients with TTS were enrolled from the International Takotsubo Registry, which is a multinational network with 26 participating centers in Europe and the United States. Patients were dichotomized according to the presence or absence of AF at the time of admission. Of 1584 patients with TTS, 112 (7.1%) had AF. The mean age was higher (P<0.001), and there were fewer women (P=0.046) in the AF than in the non-AF group. Left ventricular ejection fraction was significantly lower (P=0.001), and cardiogenic shock was more often observed (P<0.001) in the AF group. Both in-hospital (P<0.001) and long-term mortality (P<0.001) were higher in the AF group. Multivariable Cox regression analysis revealed that AF was independently associated with higher long-term mortality (hazard ratio, 2.31; 95% CI, 1.50-3.55; P<0.001). Among patients with AF on admission, 42% had no known history of AF before the acute TTS event, and such patients had comparable in-hospital and long-term outcomes compared with those with a history of AF. Conclusions In patients presenting with TTS, AF on admission is significantly associated with increased in-hospital and long-term mortality rates. Whether antiarrhythmics and/or cardioversion are beneficial in TTS with AF should thus be tested in a future trial. Registration URL: ; Unique identifier: NCT01947621.Cardiolog

    Prognostic impact of acute pulmonary triggers in patients with takotsubo syndrome: new insights from the International Takotsubo Registry

    Get PDF
    Aims Acute pulmonary disorders are known physical triggers of takotsubo syndrome (TTS). This study aimed to investigate prevalence of acute pulmonary triggers in patients with TTS and their impact on outcomes.Methods and results Patients with TTS were enrolled from the International Takotsubo Registry and screened for triggering factors and comorbidities. Patients were categorized into three groups (acute pulmonary trigger, chronic lung disease, and no lung disease) to compare clinical characteristics and outcomes.Of the 1670 included patients with TTS, 123 (7%) were identified with an acute pulmonary trigger, and 194 (12%) had a known history of chronic lung disease. The incidence of cardiogenic shock was highest in patients with an acute pulmonary trigger compared with those with chronic lung disease or without lung disease (17% vs. 10% vs. 9%, P = 0.017). In-hospital mortality was also higher in patients with an acute pulmonary trigger than in the other two groups, although not significantly (5.7% vs. 1.5% vs. 4.2%, P = 0.13). Survival analysis demonstrated that patients with an acute pulmonary trigger had the worst long-term outcome (P = 0.002). The presence of an acute pulmonary trigger was independently associated with worse long-term mortality (hazard ratio 2.12, 95% confidence interval 1.33-3.38; P = 0.002).Conclusions The present study demonstrates that TTS is related to acute pulmonary triggers in 7% of all TTS patients, which accounts for 21% of patients with physical triggers. The presence of acute pulmonary trigger is associated with a severe in-hospital course and a worse long-term outcome.Cardiolog

    Myosin-II Negatively Regulates minor process extension and the temporal development of neuronal polarity

    No full text
    The earliest stage in the development of neuronal polarity is characterized by extension of undifferentiated “minor processes” (MPs), which subsequently differentiate into the axon and dendrites. We investigated the role of the myosin II motor protein in MP extension using forebrain and hippocampal neuron cultures. Chronic treatment of neurons with the myosin II ATPase inhibitor blebbistatin increased MP length, which was also seen in myosin IIB knockouts. Through live-cell imaging, we demonstrate that myosin II inhibition triggers rapid minor process extension to a maximum length range. Myosin II activity is determined by phosphorylation of its regulatory light chains (rMLC) and mediated by myosin light chain kinase (MLCK) or RhoA-kinase (ROCK). Pharmacological inhibition of MLCK or ROCK increased MP length moderately, with combined inhibition of these kinases resulting in an additive increase in MP length similar to the effect of direct inhibition of myosin II. Selective inhibition of RhoA signaling upstream of ROCK, with cell-permeable C3 transferase, increased both the length and number of MPs. To determine whether myosin II affected development of neuronal polarity, MP differentiation was examined in cultures treated with direct or indirect myosin II inhibitors. Significantly, inhibition of myosin II, MLCK, or ROCK accelerated the development of neuronal polarity. Increased myosin II activity, through constitutively active MLCK or RhoA, decreased both the length and number of MPs and, consequently, delayed or abolished the development of neuronal polarity. Together, these data indicate that myosin II negatively regulates MP extension, and the developmental time course for axonogenesi

    Axonal Membrane Proteins Are Transported in Distinct Carriers: A Two-Color Video Microscopy Study in Cultured Hippocampal Neurons

    Get PDF
    Neurons transport newly synthesized membrane proteins along axons by microtubule-mediated fast axonal transport. Membrane proteins destined for different axonal subdomains are thought to be transported in different transport carriers. To analyze this differential transport in living neurons, we tagged the amyloid precursor protein (APP) and synaptophysin (p38) with green fluorescent protein (GFP) variants. The resulting fusion proteins, APP-yellow fluorescent protein (YFP), p38-enhanced GFP, and p38-enhanced cyan fluorescent protein, were expressed in hippocampal neurons, and the cells were imaged by video microscopy. APP-YFP was transported in elongated tubules that moved extremely fast (on average 4.5 μm/s) and over long distances. In contrast, p38-enhanced GFP-transporting structures were more vesicular and moved four times slower (0.9 μm/s) and over shorter distances only. Two-color video microscopy showed that the two proteins were sorted to different carriers that moved with different characteristics along axons of doubly transfected neurons. Antisense treatment using oligonucleotides against the kinesin heavy chain slowed down the long, continuous movement of APP-YFP tubules and increased frequency of directional changes. These results demonstrate for the first time directly the sorting and transport of two axonal membrane proteins into different carriers. Moreover, the extremely fast-moving tubules represent a previously unidentified type of axonal carrier

    Specification of Actin Filament Function and Molecular Composition by Tropomyosin Isoforms

    No full text
    The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5(NM1)), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5(NM1) was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function
    corecore