41 research outputs found

    Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg

    Get PDF
    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces different effects depending on neutron number: The lowest octupole phonon is rotationally aligned in 190Hg, is crossed by the aligned two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational character up to the highest frequency in 194Hg. The gamma vibrations are predicted to be higher in energy and less collective than the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new interpretation of the observed excited bands invoking the K=2 octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques

    Ricci-flat K\"ahler metrics on crepant resolutions of K\"ahler cones

    Full text link
    We prove that a crepant resolution of a Ricci-flat K\"ahler cone X admits a complete Ricci-flat K\"ahler metric asymptotic to the cone metric in every K\"ahler class in H^2_c(Y,R). This result contains as a subcase the existence of ALE Ricci-flat K\"ahler metrics on crepant resolutions of X=C^n /G, where G is a finite subgroup of SL(n,C). We consider the case in which X is toric. A result of A. Futaki, H. Ono, and G. Wang guarantees the existence of a Ricci-flat K\"ahler cone metric if X is Gorenstein. We use toric geometry to construct crepant resolutions.Comment: 26 pages. Accepted for publication in Mathematische Annale

    Inflation and Preheating in NO models

    Get PDF
    We study inflationary models in which the effective potential of the inflaton field does not have a minimum, but rather gradually decreases at large ϕ\phi. In such models the inflaton field does not oscillate after inflation, and its effective mass becomes vanishingly small, so the standard theory of reheating based on the decay of the oscillating inflaton field does not apply. For a long time the only mechanism of reheating in such non-oscillatory (NO) models was based on gravitational particle production in an expanding universe. This mechanism is very inefficient. We will show that it may lead to cosmological problems associated with large isocurvature fluctuations and overproduction of dangerous relics such as gravitinos and moduli fields. We also note that the setting of initial conditions for the stage of reheating in these models should be reconsidered. All of these problems can be resolved in the context of the recently proposed scenario of instant preheating if there exists an interaction g2ϕ2χ2{g^2} \phi^2\chi^2 of the inflaton field ϕ\phi with another scalar field χ\chi. We show that the mechanism of instant preheating in NO models is much more efficient than the usual mechanism of gravitational particle production even if the coupling constant g2g^2 is extremely small, 1014g2110^{-14} \ll g^2 \ll 1.Comment: 10 pages, revte

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MWBme,T,μ,pM_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong BT2B\gg T^{2} and weakly-strong BT2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference

    Single-dot Spectroscopy of GaAs Quantum Dots Fabricated by Filling of Self-assembled Nanoholes

    Get PDF
    We study the optical emission of single GaAs quantum dots (QDs). The QDs are fabricated by filling of nanoholes in AlGaAs and AlAs which are generated in a self-assembled fashion by local droplet etching with Al droplets. Using suitable process parameters, we create either uniform QDs in partially filled deep holes or QDs with very broad size distribution in completely filled shallow holes. Micro photoluminescence measurements of single QDs of both types establish sharp excitonic peaks. We measure a fine-structure splitting in the range of 22–40μeV and no dependence on QD size. Furthermore, we find a decrease in exciton–biexciton splitting with increasing QD size

    LASER IN CERAMICS PROCESSING

    No full text

    On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds

    No full text
    We apply Gromov's concept of asymptotic cone to distinguish quasi-isometry classes of fundamental groups of 3-manifolds. We prove that the existence of a Seifert component in a Haken manifold is a quasi-isometry invariant of its fundamental group. (orig.)Available from TIB Hannover: RO 5389(344) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    A comprehensive study of the effect of in situ annealing at high growth temperature on the morphological and optical properties of self-assembled InAs/GaAs QDs

    No full text
    We investigate the effect of in situ annealing during growth pause on the morphological and optical properties of self-assembled InAs/GaAs quantum dots (QDs). The islands were grown at different growth rates and having different monolayer coverage. The results were explained on the basis of atomic force microscopy (AFM) and photo-luminescence (PL) measurements. The studies show the occurrence of ripening-like phenomenon, observed in strained semiconductor system. Agglomeration of the self-assembled QDs takes place during dot pause leading to an equilibrium size distribution. The PL properties of the QDs are affected by the Indium desorption from the surface of the QDs during dot pause annealing at high growth temperature (520A degrees C) subsiding the effect of the narrowing of the dot size distribution with growth pause. The samples having high monolayer coverage (3.4 ML) and grown at a slower growth rate (0.032 ML s(-1)) manifested two different QD families. Among the islands the smaller are coherent defect-free in nature, whereas the larger dots are plastically relaxed and hence optically inactive. Indium desorption from the island surface during the in situ annealing and inhomogeneous morphology as the dots agglomerate during the growth pause, also affects the PL emission from these dot assemblie
    corecore