7 research outputs found

    Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγ null mice

    Get PDF
    Delayed engraftment remains a major hurdle after cord blood (CB) transplantation. It may be due, at least in part, to low fucosylation of cell surface molecules important for homing to the bone marrow microenvironment. Because fucosylation of specific cell surface ligands is required before effective interaction with selectins expressed by the bone marrow microvasculature can occur, a simple 30-minute ex vivo incubation of CB hematopoietic progenitor cells with fucosyltransferase-VI and its substrate (GDP-fucose) was performed to increase levels of fucosylation. The physiologic impact of CB hematopoietic progenitor cell hypofucosylation was investigated in vivo in NOD-SCID interleukin (IL)-2Rγ null (NSG) mice. By isolating fucosylated and nonfucosylated CD34 + cells from CB, we showed that only fucosylated CD34 + cells are responsible for engraftment in NSG mice. In addition, because the proportion of CD34 + cells that are fucosylated in CB is significantly less than in bone marrow and peripheral blood, we hypothesize that these combined observations might explain, at least in part, the delayed engraftment observed after CB transplantation. Because engraftment appears to be correlated with the fucosylation of CD34 + cells, we hypothesized that increasing the proportion of CD34 + cells that are fucosylated would improve CB engraftment. Ex vivo treatment with fucosyltransferase-VI significantly increases the levels of CD34 + fucosylation and, as hypothesized, this was associated with improved engraftment. Ex vivo fucosylation did not alter the biodistribution of engrafting cells or pattern of long-term, multilineage, multi-tissue engraftment. We propose that ex vivo fucosylation will similarly improve the rate and magnitude of engraftment for CB transplant recipients in a clinical setting

    Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment

    Get PDF
    Background aims: Advantages associated with the use of cord blood (CB) transplantation include the availability of cryopreserved units, ethnic diversity and lower incidence of graft-versus-host disease compared with bone marrow or mobilized peripheral blood. However, poor engraftment remains a major obstacle. We and others have found that ex vivo fucosylation can enhance engraftment in murine models, and now ex vivo treatment of CB with fucosyltransferase (FT) VI before transplantation is under clinical evaluation (NCT01471067). However, FTVII appears to be more relevant to hematopoietic cells and may alter acceptor substrate diversity. The present study compared the ability of FTVI and FTVII to improve the rapidity, magnitude, multi-lineage and multi-tissue engraftment of human CB hematopoietic stem and progenitor cells (HSPCs) in vivo. Methods: CD34-selected CB HSPCs were treated with recombinant FTVI, FTVII or mock control and then injected into immunodeficient mice and monitored for multi-lineage and multi-tissue engraftment. Results: Both FTVI and FTVII fucosylated CB CD34+ cells in vitro, and both led to enhanced rates and magnitudes of engraftment compared with untreated CB CD34+ cells in vivo. Engraftment after treatment with either FT was robust at multiple time points and in multiple tissues with similar multi-lineage potential. In contrast, only FTVII was able to fucosylate T and B lymphocytes. Conclusions: Although FTVI and FTVII were found to be similarly able to fucosylate and enhance the engraftment of CB CD34+ cells, differences in their ability to fucosylate lymphocytes may modulate graft-versus-tumor or graft-versus-host effects and may allow further optimization of CB transplantation

    PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia

    No full text
    Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis
    corecore