38 research outputs found

    Spectral functions, Fermi surface and pseudogap in the t-J model

    Full text link
    Spectral functions within the generalized t-J model as relevant to cuprates are analyzed using the method of equations of motion for projected fermion operators. In the evaluation of the self energy the decoupling of spin and single-particle fluctuations is performed. It is shown that in an undoped antiferromagnet (AFM) the method reproduces the selfconsistent Born approximation. For finite doping with short range AFM order the approximation evolves into a paramagnon contribution which retains large incoherent contribution in the hole part of the spectral function as well as the hole-pocket-like Fermi surface at low doping. On the other hand, the contribution of (longitudinal) spin fluctuations, with the coupling mostly determined predominantly by J and next-neighbor hopping t', is essential for the emergence of the pseudogap. The latter shows at low doping in the effective truncation of the large Fermi surface, reduced electron density of states and at the same time quasiparticle density of states at the Fermi level.Comment: RevTex, 13 pages, 11 figures (5 color

    Spin correlations in the algebraic spin liquid - implications for high Tc superconductors

    Full text link
    We propose that underdoped high TcT_c superconductors are described by an algebraic spin liquid (ASL) at high energies, which undergoes a spin-charge recombination transition at low energies. The spin correlation in the ASL is calculated via its effective theory - a system of massless Dirac fermions coupled to a U(1) gauge field. We find that without fine tuning any parameters the gauge interaction strongly enhances the staggered spin correlation even in the presence of a large single particle pseudo-gap. This allows us to show that the ASL plus spin-charge recombination picture can explain many highly unusual properties of underdoped high TcT_c superconductors.Comment: 22 pages, 18 figures, submitted to PR

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change

    Detection of HIV, hepatitis B and hepatitis C markers in discarded syringes and bloodstains

    No full text
    Puncture injuries from discarded syringes continue to increase and testing these syringes for viral markers of HIV, HBV and HCV infection is now frequently requested. Workers in forensic medicine also regularly deal with potentially infected material. A simulation study was carried out. Syringes (with attached needles) and cotton gauze were contaminated with HIV, HBV and HCV infected blood or serum and tested at intervals over five weeks. Sensitive ELISA techniques, giving a result within three hours, were used to detect viral antibodies (HIV, HCV) or antigens (HBV). Blood residues inside the syringes and on the gauze gave positive results for viral markers throughout the period of study; the needle-tips gave intermittently positive reactions. It was concluded that standard ELISAs for detecting markers of HIV, HBV and HCV could provide valuable guidance on potential infection hazards of material being examined in a forensic situatio
    corecore