9 research outputs found

    Automatic event detection within thrombus formation based on integer programming.

    No full text
    After a blood vessel injury, blood platelets progressively aggregate on the damaged site to stop the resulting blood loss. This natural mechanism called thrombosis can however be prone to malfunctions and lead to the complete obstruction of the blood vessel. Thrombosis disorders play a crucial role in coronary artery diseases and the identification of genetic risk predispositions would therefore considerably help their diagnosis and therapy. In vitro experiments are conducted in this purpose by perfusing blood from several donors over a surface of collagen fibres, which results in the progressive attachment of platelets. Based on the segmentation over time of these aggregates called thrombi, we propose in this paper an automatic method combining tracking and event detection which allows the extraction of characteristics of interest for each thrombus growth individually, in order to find a potential correlation between these growth features and blood donors genetic disorders. We demonstrate the benefits of our approach and the accuracy of its results through an experimental validation

    Production of calmodulin-tagged proteins in Drosophila Schneider S2 cells: a novel system for antigen production and phage antibody isolation.

    No full text
    We report the development of an expression system for the production of soluble, calmodulin (CaM)-tagged proteins in Drosophila Schneider S2 cells and the subsequent use of these proteins for the selection of phage displayed antibodies. The CaM-tag permitted the purification of recombinant protein to >90% purity in a single step at yields of >20 mg/l. Using platelet glycoprotein VI (GP6) as a model, we demonstrated that the recombinant CaM-tagged protein was post-translationally N-glycosylated and had identical ligand specificity to native protein. A novel selection strategy, exploiting the CaM tag, was then used to isolate four single chain Fv fragments (scFvs) specific for GP6 from a non-immune phage display library. In contrast to other selection methods, which can result in antibodies that do not recognise native protein, all of the scFvs we selected bound cell surface expressed GP6. In conclusion, the production of CaM-tagged proteins in Drosophila Schneider S2 cells and the selection strategy reported here offer advantages over previously published methods, including simple culture conditions, rapid protein purification, specific elution of phage antibodies and preferential selection of phage antibodies that recognise native, cell surface expressed protein

    SCHOOL Model and New Targeting Strategies

    No full text

    Signaling Chain Homooligomerization (SCHOOL) Model

    No full text

    The fourteenth data release of the Sloan Digital Sky Survey:first spectroscopic data from the extended Baryon Oscillation Sky Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    No full text
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
    corecore