4 research outputs found

    Sequential bottlenecks drive viral evolution in early acute Hepatitis C virus infection

    Get PDF
    Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral population was conducted in four subjects followed from very early acute infection to resolution of disease outcome. By means of next generation sequencing (NGS) and standard cloning/Sanger sequencing, genetic diversity and viral variants were quantified over the course of the infection at frequencies as low as 0.1%. Phylogenetic analysis of reassembled viral variants revealed acute infection was dominated by two sequential bottleneck events, irrespective of subsequent chronicity or clearance. The first bottleneck was associated with transmission, with one to two viral variants successfully establishing infection. The second occurred approximately 100 days post-infection, and was characterized by a decline in viral diversity. In the two subjects who developed chronic infection, this second bottleneck was followed by the emergence of a new viral population, which evolved from the founder variants via a selective sweep with fixation in a small number of mutated sites. The diversity at sites with non-synonymous mutation was higher in predicted cytotoxic T cell epitopes, suggesting immune-driven evolution. These results provide the first detailed analysis of early within-host evolution of HCV, indicating strong selective forces limit viral evolution in the acute phase of infection

    A systematic review of T-cell epitopes in hepatitis B virus: Identification, genotypic variation and relevance to antiviral therapeutics

    No full text
    Background: The immune response to hepatitis B virus (HBV) is important for both viral control and disease pathogenesis. A detailed understanding of the HBV specificT-cell responses may potentially lead to novel therapeutic strategies for HBV. Methods: All English language journal articles(including articles in press) up to October 2007 were retrieved using searches of MEDLINE, EMBASE and the Cochrane Controlled Trial Registry. An extensive database of HBV sequences (SeqHepB) and GenBank we reused to assess the degree of sequence variation in each epitope. The new standardized nomenclature for HBV amino acid position number was applied to all previously defined epitopes. Results: Forty-four HBV-specific human leukocyte antigen (HLA) class I restricted and 32 HBV-specific HLA class II restricted epitopes have been defined and have been identified in all HBV genes. The majority of HLA class I restricted epitopes have been defined in HLA-A2-positive individuals in the setting of acute HBV infection. There is significant sequence variation of these epitopes within and between HBV genotypes. Newer HBV immunotherapeutics appear promising but are still in early phases of development. Conclusions: Identification of HBV-specific epitopes innon-HLA-A2-positive individuals and recognition of genotypic variation across epitopes are important for the future development of novel immunotherapeutic strategies for the management of chronic HBV infection
    corecore