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Abstract

Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The
characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is
instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral
population was conducted in four subjects followed from very early acute infection to resolution of disease outcome. By
means of next generation sequencing (NGS) and standard cloning/Sanger sequencing, genetic diversity and viral variants
were quantified over the course of the infection at frequencies as low as 0.1%. Phylogenetic analysis of reassembled viral
variants revealed acute infection was dominated by two sequential bottleneck events, irrespective of subsequent chronicity
or clearance. The first bottleneck was associated with transmission, with one to two viral variants successfully establishing
infection. The second occurred approximately 100 days post-infection, and was characterized by a decline in viral diversity.
In the two subjects who developed chronic infection, this second bottleneck was followed by the emergence of a new viral
population, which evolved from the founder variants via a selective sweep with fixation in a small number of mutated sites.
The diversity at sites with non-synonymous mutation was higher in predicted cytotoxic T cell epitopes, suggesting immune-
driven evolution. These results provide the first detailed analysis of early within-host evolution of HCV, indicating strong
selective forces limit viral evolution in the acute phase of infection.
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Introduction

Hepatitis C virus (HCV) infection is a major cause of chronic

liver disease, resulting in substantial morbidity and mortality

worldwide, with between 123 and 170 million persons infected [1].

Transmission is predominantly via blood-to-blood contact associ-

ated with contaminated injection devices. Infection persists in

approximately 70% of acute cases, leading to chronic hepatitis,

and ultimately cirrhosis and the associated complications of liver

failure and hepatocellular carcinoma [2]. The outcome of primary

HCV infection is driven by the interplay between rapid viral

evolution and host adaptive immune responses [3,4]. Analogous to

other RNA virus infections, development of effective vaccines and

antiviral treatments has been constrained by the ability of these

viruses to swiftly overcome evolutionary pressures such as host

immunity and antiviral drugs [5–7].

The rapid rate of evolution in RNA viruses is driven by a highly

error-prone RNA-dependent RNA polymerase (RdRp). For HCV,

the estimated mutation rate is 1.261024 substitutions per site per

infected cell [8], and with a half-life of 3–5 hrs, it is estimated that

at least 1012 particles are generated per day [9]. With these rapid

kinetics, at least 109 variants with single- and double-nucleotide

changes are likely to arise in each individual multiple times daily

[10]. However, the observed viral complexity is much less than this

prediction, largely due to reduced fitness of mutated variants [11].

While the error-prone viral replicase results in a continuous supply

of new viral variants (genetic drift), purifying selection generated

from host immune pressure and viral fitness results in culling and

preferential selection of certain variants. When selection overbal-

ances drift, a genetic bottleneck occurs (i.e. evolutionary events

resulting in a reduction in genetic variation due to extinction of a

significant proportion of the viral variants).

Very little quantification of the within-host evolutionary

dynamics of human RNA viruses has been reported, and limited

information exists from experimental evolution systems [12], and

from viruses infecting animals. For RNA viruses, the effective

population size - broadly equated with the number of variants that

will contribute genes to the next generation, a key parameter in
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viral evolution - is smaller than the census size. This discrepancy is

often seen at the epidemiological level as result of a strong

transmission bottleneck. Well-characterized within-host genetic

bottlenecks have been observed upon transmission of a number of

RNA viruses, including HIV [13–15]. A low effective population

size has important consequences for viral evolution, as at small

effective population numbers (Ne), random processes (i.e. genetic

drift) predominate over deterministic ones (i.e. selection) [16].

Genetic bottlenecks severely limit viral diversity and potentially

limit replicative fitness of the resultant virus (reviewed in [12]).

After a bottleneck event, RNA viruses undergo rapid evolution,

leading to accumulation of deleterious mutations and the

occurrence of rare fit variants, which can rapidly reach fixation

and dominate the next population.

Following a genetic bottleneck, within-host evolution of rapidly

mutating viruses can be characterized by selective sweeps (i.e. the

reduction or elimination of variants in the viral population as the

result of strong selection pressures), with only a few variants

emerging to dominate the future population. This phenomenon is

common at the host population level, such as in influenza [17],

and has been documented within-host for HCV [18,19] and HIV

[20]. The extent to which positive selection and random genetic

drift contribute to the within-host evolution of HCV, and whether

selective sweeps observed late in primary infection are related to

genetic bottleneck events, remain to be resolved.

A major challenge in studies of the within-host evolution of

RNA viruses lies in the capacity to detect low frequency viral

variants. Standard cloning techniques, and more recently single

genome amplification, followed by sequencing have been used to

detect variants present at frequencies as low as 10–15%

[15,21,22]. Next generation sequencing (NGS), despite high

technical errors [23], allows detection of rare variants present at

less than 1% of the population [24–33]. Data analysis tools have

now improved the ability to differentiate true biological variation

from technical error [34,35], and also enabled reconstruction of

genomic regions of individual variants from short NGS reads

[34,36].

The early evolution of HCV has been investigated to date only in

limited case series [18,30,35,37–40], and with a strong bias towards

symptomatic cases, who represent a small minority of those with

acute infection, and who are known to have an increased likelihood

of clearance [3,4]. Few studies have investigated early infection in a

longitudinal fashion [30,35,39,41]. In these cases the frequency,

distribution, and timing of viral mutations has been characterized

only in limited regions of the virus and with low sensitivity in the

detection of rare variants.

Here we report a comprehensive analysis of longitudinal

collected samples from four subjects identified very early in

asymptomatic acute HCV infection. The aim was to quantify the

number of successfully transmitted founder viruses, and to

characterize the diversity and complexity of viral population

across the genome over the course of the primary infection leading

to clearance or chronicity.

Results

Subjects
Four newly viremic seronegative subjects were studied (Figure 1,

Table 1, Table S1). Subjects were enrolled in the Hepatitis C

Incidence and Transmission Study (HITS) cohort, and had tested

negative for HCV antibodies and RNA within 3–6 months prior

[42,43]. The estimated days post-infection (DPI) at enrolment

ranged from 30–45 days (Table 1). Two subjects cleared the

infection (686_Cl, 360_Cl), and the other two progressed to

chronic infection (23_Ch, 240_Ch). A single viral genotype (GT)

was detected in each subject: two with GT1a (686_Cl, and

23_Ch), and two with GT3a (360_Cl, and 240_Ch). Figure 1

shows the HCV RNA levels and HCV-specific IgG antibody titers

(estimated as the optical density to cut-off ratio in the enzyme

immunoassay) over the course of infection.

For the purposes of this analysis, the time course of the primary

infection was divided into three phases: i) transmission; ii) an acute

phase (designated as ,100 DPI); and iii) a pre-chronic phase

(designated as .100 DPI) leading to clearance or chronicity at six

months post-infection).

Evolutionary dynamics of viral diversity over the course
of the infection

NGS, standard cloning and bulk (consensus) sequencing were

performed on viremic samples collected longitudinally from each

of the subjects (Figure 1). On average, 81,900 reads with average

read lengths of 358 bp were generated per subject per timepoint,

giving an average coverage depth of 3,093 (Table S2). Single

nucleotide polymorphisms (SNP) analysis revealed between 160

and 460 nucleotide substitutions per timepoint. Over the course of

the infection more than half of the substitution events occurred at

frequencies of ,1%, except in subject 240_Ch (38%). Non-

synonymous substitutions constituted 40%–57% of the total and

were distributed across the genome (Figure 2). Within the first 60

DPI, the prevalence of non-synonymous substitutions was

approximately half of the total (50–57%), except in subject

686_Cl (34%). Subject 686_Cl showed the highest prevalence of

substitutions with a frequency ,1% (76% during the first 60 DPI).

In the two subjects who became chronically infected (23_Ch and

240_Ch), the prevalence of substitutions was significantly higher

than in subjects who ultimately cleared the infection (686_Cl and

360_Cl). In subjects that progressed to chronicity, some substitu-

tions reached frequencies above 99% (i.e., fixations; see also

below).

Shannon entropy (SE) was calculated from the frequencies of

nucleotide substitutions measured across the genome. During the

Author Summary

Primary hepatitis C (HCV) infection is typically asymptom-
atic and commonly results in persistent infection. The
characteristics of early infection remain undefined. Four
subjects were studied longitudinally from within a few
weeks of transmission until resolution of outcome, via a
full genome analysis of viral evolution. In the acute phase
(,100 days post-infection) there were two periods with a
major reduction in genetic diversity (i.e. a bottleneck)
irrespective of subsequent clearance (n = 2) or chronic
infection (n = 2). The first bottleneck was associated with
transmission, with generally only one ‘founder’ virus
successfully establishing infection. The second occurred
following the primary peak in viraemia, concomitant with
seroconversion, approximately 100 days post-infection. In
the subjects who became chronically infected, the second
bottleneck was followed by emergence of a new cluster of
variants, which evolved from the founder(s), and carried
only a small number of mutated residues that reached
fixation. Some fixations occurred in known targets of CD8
cytotoxic T cell and neutralizing antibody responses. These
results indicate a common evolutionary pattern, indepen-
dent of disease outcome in the acute phase of HCV
infection, with strong signatures of selective pressures
driving the transition into chronic infection. These novel
data will inform preventative vaccine strategies.
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acute phase, the SE measures indicated a general decline in viral

diversity. This decline did not follow the HCV RNA kinetics.

Similar patterns were observed for SE calculated with all

substitutions, or with only non-synonymous changes. In two

subjects (686_Cl, 23_Ch) at least two pre-seroconversion time-

points were sampled within a window of eight weeks, allowing an

accurate assessment of very early HCV evolution, and revealing a

peak in viral diversity in temporal proximity to the viremic peak.

In the two subjects who ultimately became chronically infected

(23_Ch and 240_Ch), SE increased in the pre-chronic phase, which

also featured a continued increase in HCV RNA level (Figure 1).

The observed patterns of change in SE measured across the full

genome were not consistently observed in the 10 protein-encoding

regions, clearly indicating a non-uniform evolution of HCV across

the genome and between subjects.

Transmission - First bottleneck
To test the hypothesis that a single virus establishes infection

upon transmission, a statistical model, PoissonFitter [44] was used

to examine whether the viral population had a star-like phylogeny

Figure 1. RNA level, Shannon entropy, and antibody titers over time for the four early infection subjects. Panels A and B show two
subjects who developed chronic infection (240_Ch, 23_Ch) followed from pre-seroconversion timepoints. Panels C and D show the infection
dynamics for two subjects who ultimately cleared the infection (360_Cl, 686_Cl). Red dots represent viremic time points analyzed via next generation
sequencing (NGS). The solid line represents the RNA level. The dashed and dotted lines represent the interpolation of the Shannon entropy calculated
across the genome at each time point using NGS data. Entropy was calculated using all mutated sites (dotted line), or with only non-synonymous
sites (dashed line). The shaded area represents semi-quantitative estimates of the anti-HCV antibody titer (OD: cut-off). Note the varied ranges in the
x- and y-axes.
doi:10.1371/journal.ppat.1002243.g001

Table 1. Subject characteristics, number of founder viruses, and estimates of the time since the most recent common ancestor
(tMRCA).

Subject
ID Sex

Disease
outcome GT Age

First sampling
timepoint
(DPIa)

Observed
duration of
viraemia (DPI)

Timepoints
analysed via
NGSb

Length of
genome
investigated

Maximum
entropy (full
genomec)

Number of
founder
viruses

Poisson
estimated
tMRCA (95%
CI) d

686_Cl F Cleared 1a 25 33 117 4 9172 0.010414 1 35 (26,47)

23_Ch M Chronic 1a 25 36 304 6 9138 0.002323 2 44 (24, 64)

360_Cl M Cleared 3a 29 30 223 2 5992 0.003190 1 34 (20, 57)

240_Ch M Chronic 3a 24 44 477 4 9226 0.001546 1 34 (19,48)

aEstimated days post-infection (DPI).
bNext Generation Sequencing.
cCalculated across the genome for non-synonymous substitutions.
dMean value from the estimates of the time since most recent common ancestor (tMRCA) estimated from reconstructed viral variants across the genome in windows of

400 nt calculated according to a Poisson model of viral mutation (45). Confidence intervals are the 5th and 95th percentiles of the total range of confidence intervals
estimated in each of the windows analyzed across the genome.

doi:10.1371/journal.ppat.1002243.t001
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with a Poisson distribution [22]. For this analysis reconstructed

viral variants were obtained from NGS reads using a Bayesian

statistical tool, ShoRAH [34,36]. Firstly, viral haplotypes were

reconstructed from NGS data at the first viremic timepoint

segregated into 400 nt windows across the genome (see Table S3,

including the number of variants reconstructed per window).

Secondly, reconstructed haplotypes of the E1/HVR1 (871 nt) and

partial E2 (932 nt) regions were utilized, along with the

corresponding E1/E2 clonal sequences (Table S3). In the second

dataset, only variants with a frequency greater than 2.5% were

included in this analysis. This cut-off was derived through a

validation analysis for the method of reconstruction of viral

haplotypes (of length . 400 nt) using a mixed sample of four

plasmid E1/E2 clones derived from one subject (see Supporting

Text S1 for details). By definition, the sequence of the founder was

identified as being: i) the most prevalent variant; and ii) identical to

the consensus sequence of the viral population at the first time

point [15,22].

Both the PoissonFitter tests and phylogenetic analyses indicated

that the HCV infection in three subjects (686_Cl, 360_Cl, and

240_Ch) was successfully established by a single variant (Figures 3,

S1, S2 and Table S3). For these subjects, the highlighter plots

show the random distribution of SNPs across the sequences, again

consistent with a star-like distribution of variants arising from a

single founder. By contrast, Poisson analysis of the remaining

subject (23_Ch) indicated that more than one virus established the

infection. Phylogenetic analyses of E1, E2 and NS3 regions of

subject 23_Ch indicated that at least two viruses had established

the infection, designated 23AF and 23BF (Figures 3 and S1, Table

S3). These founders generated two major clusters of variants,

which were named after the founder variants. These two founder

variants were identified with comparable prevalence in both E1/

HVR1 (Figure S1) and E2 regions (Figures 3). The average genetic

difference between these two dominant variants over E1/E2

regions was 1.3%. In support of these results, the founder variants

were also identified via clonal sequencing in both E1/HVR1

(Figure S1) and E2 regions (Figure 3). For 23_Ch, the calculation

of the exact number of founder viruses was confounded by the

presence of several variants that appeared to have arisen from

recombination events between two viruses from each cluster (see

for example, variant C1_14b in Figure 3).

A total of 2-5 variants (including the founders) were detected

with a frequency above 2.5% in 240_Ch, 686_Cl, and 360_Cl at

the first viremic timepoint. Subject 23_Ch presented the most

diverse repertoire, with nine variants present in the E1/E2 region.

These results, in combination with the fact that .50% of

substitutions were present at a frequency ,1% (see above),

indicate that early HCV evolution was characterized by a large

distribution of low frequency variants.

The time since the most recent common ancestor (tMRCA),

which is estimated with PoissonFitter, provides an empirical

measure of the likely timing of the transmission event [22,45]. The

estimated tMRCA from independent analyses of E1/HVR1 and

partial E2 regions closely matched the DPI estimated from the

Figure 2. Distribution of the non-synonymous substitutions detected across the genome over the course of the infection. Panels A
and B show the distributions of non-synonymous substitutions in two subjects who developed chronic infection (240_Ch, 23_Ch). Panels C and D
show two subjects who ultimately cleared the infection (360_Cl, 686_Cl). Each panel shows the longitudinal analysis of the distribution of non-
synonymous substitutions for each subject. In subjects who cleared the infection, substitutions sporadically emerged at low frequency (,50%). In the
two subjects that developed chronic infection, several substitutions across the full genome reached fixation (.99%). Colors represent the time course
post-infection (see legend).
doi:10.1371/journal.ppat.1002243.g002
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seroconversion timepoint (Tables 1 and S3). The tMRCA

estimated from the founder analyses in windows of 400 nt across

the full genome also matched the DPI estimated from the

seroconversion timepoint (Table S3). As expected, estimates of the

tMRCA in 23_Ch from genomic regions with evidence of at least

two founders were longer than those estimated from the

seroconversion timepoint, indicating that the observed diversity

was not likely to be generated by a single founder.

Acute phase - Second bottleneck
Analysis of the viral dynamics in the acute phase of infection (i.e.

,100 DPI) for each subject revealed a second genetic bottleneck

event brought about by the extinction of several variants. Evidence

for this second bottleneck was supported by: i) the decline in SE for

all four subjects at the end of the acute phase; ii) a decline in viral

diversity evidenced by phylogenetic analysis; and iii) a decrease in

the effective population size estimated from viral sequences in the

two subjects who developed chronic infection.

Phylogenetic reconstruction of partial E2 nucleotide sequences

showed a decline in viral diversity at the end of the acute phase

(Figure 4). In 240_Ch, infection was successfully initiated with a

single founder, 240AF, identified here as the most prevalent

variant (85% of the population) of the cluster (termed 240AF after

the founder) observed in the acute phase (Figures 3 and 4). The

early increase in prevalence of the founder variant (up to 97% by

57 DPI) and the absence of minor viral variants, are consistent

with the observed decline in SE and increase in HCV RNA level.

The two founders identified in 23_Ch differed only at three

residues in the E2 region (402, 443 and 446). Initially, these

founders were present at comparable levels within the viral

population (26% and 16% respectively, Figure 4). However, by 60

DPI, the founder variant within cluster 23AF was undetectable -

concomitant with seroconversion and with the decline in HCV

RNA level between 44 DPI and 60 DPI (Figure 4). The prevalence

of the second founder variant, 23BF remained reasonably stable

within the cluster until 60 DPI, whereas by 74 DPI its frequency

was greatly diminished, consistent with the overall reduction in

HCV RNA level. Similar patterns of decline in viral diversity were

also observed by phylogenetic analyses in other regions of the same

subjects (E1/HVR1, Figure S3 and NS3, Figure S4) and also in

the other two subjects (not shown).

Figure 3. Founder virus analysis based on partial E2 region of the viral genome. Panels A and B show the analyses for two subjects who
developed chronic infection (240_Ch, 23_Ch) followed from pre-seroconversion timepoints. Panels C and D show the analysis for two subjects who
cleared the infection (360_Cl, 686_Cl). Phylogenetic reconstructions and highlighter plots are shown, illustrating the genetic relatedness between
HCV variant sequences. Names of each sequence are labeled with a letter (H for haplotype, and C for clone), with the first number representing the
sampling timepoint and with the second number representing either the prevalence of the haplotype or the clone number. The phylogenetic trees of
subjects 686_Cl, 360_Cl and 240_Ch (panels A, C, D) are consistent with an infection arising from a single founder. The fit with a Poisson model is also
consistent with a single founder (p-value . 0.1, see text). As shown by the highlighter plots, founder viruses are identified as the consensus sequence
and coincided with the most prevalent variant reconstructed from NGS data, (e.g. for subject 686_Cl H1_0.60 is identical to the consensus sequence
and to clone C_12b). The highlighter plots also show the random distribution of mutated sites with respect to the founder sequence (master), which
is consistent with a star-like phylogeny. The phylogenetic analysis in 23_Ch (panel B) is consistent with an infection originated from two founder
viruses (indicated with an asterisk in the highlighter plot) giving rise to two major clusters, 23A and 23B. This is consistent with the rejection of the
Poisson model (p-value = 0). Phylogenetic trees were obtained using PhyML, with Maximum Likelihood methods using a GTR model of substitution as
suggested by model testing.
doi:10.1371/journal.ppat.1002243.g003
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The evolutionary trajectories of individual viral variants at the

amino acid level in the partial E2 region (Figure 5) and E1/HVR1

(data not shown), also showed the dominance of two distinct

viruses for 23_Ch (23AF and 23BF) and one for 240_Ch (240AF) in

the acute phase. Minor variants emerged during this phase with the

majority receding below the limit of detection.

A decrease in the effective population size also provided

evidence of sequential bottleneck events. A coalescent demo-

graphic reconstruction of the viral population within each host,

using the Bayesian skyline plot [46] on E1/HVR1 and partial E2

regions (Figure 6) revealed a decline in diversity (measured as Nt,
the product of the effective population size and generation length

in days) during the acute phase of infection in both subjects who

became chronically infected (23_Ch and 240_Ch). The estimates

of the time of infection from this analysis were consistent with

those found via the Poisson model (Table S3). Demographic

reconstruction for subjects who cleared infection (360_Cl and

686_Cl) showed little variation in effective population size over the

course of the infection (Figure S5), which is likely to reflect the

short time interval covered by the available samples.

Pre-chronic phase - Selective sweep
The pre-chronic phase (i.e, .100 DPI) featured selective sweeps,

with the new variants arising from the preceding viral population

in the acute phase, showing remarkably few substitutions reaching

fixation in the new population. In subject 240_Ch, following the

decline in HCV RNA level at 140 DPI, a new cluster of variants,

termed here 240AC, figure 4) replaced the 240AF cluster via a

selective sweep brought about by the second bottleneck event.

Similarly, in 23_Ch, the recrudescence of viremia in the pre-chronic

phase was associated with the emergence of a new cluster, 23AC,

which evolved only from cluster 23AF via a selective sweep

(Figure 4b). In both subjects a single variant dominated the pre-

chronic phase population, accounting for 74% of the total HCV

RNA level in subject 23_Ch, and approximately 50% in 240_Ch.

Further evidence in support of the establishment of a new viral

Figure 4. Evolutionary dynamics of HCV variants over the partial E2 region of the genome. Sequence analyses of the two subjects who
developed chronic infection, 240_Ch (A), and 23_Ch (B) revealed the presence of selective sweeps. These sweeps led to the emergence of new
variants that replaced the founder viruses (identified with an asterisk). Phylogenetic trees (left panels in A and B) display nucleotide sequences of
reconstructed haplotypes derived from NGS data and clonal sequences. Names of each sequence are labeled with a letter (H for haplotype and C for
clone), with the first number representing the sampling timepoint and with the second number representing either the prevalence of the haplotype
or the clone number. Colors are also used to portray the sampling timepoint (see legend). Infection dynamics for subject 240_Ch are consistent with a
single founder, identified with the most prevalent strain of cluster 240A (H2_0.85 and H3_0.97 at time-points 2 and 3 respectively), with clone C2_6,
and with the consensus of the sequences from time-point 1. The pre-chronic phase (corresponding with the color-coded time ranges 5 and 6) of
infection shows the emergence and dominance of a new subgroup of viruses, designated 240B. 23_Ch has at least two founder viruses that
successfully initiated the infection (H1_0.26 and H1_0.16 within the two clusters 23AF and 23BF, respectively), A new cluster 23AC, termed after the
dominant variant H5_0.54, emerged in the pre-chronic phase and replaced cluster 23AF. Trees are calculated using Maximum Likelihood method
(implemented in PhyML).
doi:10.1371/journal.ppat.1002243.g004
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Figure 5. Evolution of the partial E2 region of individual HCV variants at the amino acid level. The plots in A (subject 240_Ch) and B
(23_Ch) show the dynamics of the individual viral variants over time. In 240_Ch, infection was initiated with one founder variant, 240AF, which was
then replaced sequentially by two related variants, 240AC1 and 240AC2, respectively. In 23_Ch, at least two founders initiated infection, 23AF and 23BF,

Viral Evolution in Hepatitis C Virus Infection
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population in the pre-chronic phase was provided by the increase in

effective population size following the second bottleneck, which

was particularly evident for 240_Ch (Figure 6).

Fixation (.99%) was observed in a limited number of sites in

association with the selective sweep (Figure 2). Fixation occurred at

two sites in 23_Ch by 136 DPI (E2, 542; NS3, 1498) and at 12 sites

in 240_Ch by 159 DPI (E1, 372; E2: 443, 483 and 543; NS2, 750;

NS3: 1509, 1606; NS4b: 1768; NS5a: 1985, 1999; NS5B: 2497

and 2973). Further evolution was observed with additional fixation

sites occurring by 304 DPI in NS2 (856) and NS5B (2629),

indicating the presence of a further selective sweep event. In

subject 240_Ch a further selective sweep event occurred by 477

DPI, with fixations observed in E2 (400, 405, 408, 583), NS3

(1641), and NS5a (2361).

Evidence of immune driven selection
In order to determine whether non-synonymous substitutions

were likely to be driven by cellular and humoral immune

responses, we identified the location of predicted, as well as

experimentally-verified, epitopes across the full genome for each

subject (Table S4). Analysis of HLA class I restricted cytotoxic T

cell (CTL) epitopes revealed a total of 62 amino acid substitutions

(29 in 23_Ch, 12 in 240_Ch, 8 in 686_Cl, and 13 in 360_Cl)

which were found to be located in HLA-restricted epitopes (Table

S4, Figure 5). Twenty-four of these substitutions resulted in mutant

epitopes with a lowered predicted binding score, suggesting that

these substitutions potentially conferred a CTL immune escape

phenotype (Table S5). In 23_Ch, all four sites that reached fixation

in the pre-chronic phase lay within HLA-restricted epitopes. In

240_Ch, of the 18 sites that reached fixation in the pre-chronic

phase, nine lay within CTL epitopes.

Figure 5 shows the location of the E2 mutations within putative

CTL and B cell epitopes in the different variants in subjects 23_Ch

and 240_Ch, as well as mutations previously shown to be

associated with viral fitness costs. All the identified epitopes within

this region carried at least one amino acid change. Two of these

mutations (G483D for 240_Ch and T542I for 23_Ch) generated

CTL epitopes with reduced binding affinity, thus indicating

potential immune escape (Table S4). Interestingly, both subjects

also showed a substitution at position 443 (Y443I for 23_Ch and

Y443H in 240_Ch) known to be within a B cell epitope [47]. In

240_Ch a mutation at 543 was observed (T543A). Mutations at

this site have been reported to alter the yield of precipitated E1/E2

proteins [48].

Comparison between SE (based on all substitutions) at sites of

predicted CTL epitopes, with sites at which no epitopes were

predicted, revealed significant differences for each subject (Mann

Whitney; all p,0.01). In three subjects (excluding 686_Cl who

had rare HLA-B alleles, and hence limited information available

for epitope prediction), the distribution of SE values based only on

non-synonymous substitutions, revealed that epitope regions

carried higher SE values (Mann Whitney; p,0.01). These results

which both dominated the early phase of infection before being replaced by a new variant in the pre-chronic phase of infection (23AC). The y-axis
shows the contribution of each variant with respect to the RNA level. Below each graph is an amino acid alignment indicating the distinguishing
residues for the different variants. The location of putative CTL (pink shading) and B cell (green shading) epitopes, and mutations with previously
recorded viral fitness costs (light blue shading) are indicated. All the identified epitopes within this region carried at least one amino acid change. Two
of these mutations (G483D for 240_Ch and T542I for 23_Ch) generated CTL epitopes with reduced binding CTL affinity, and both subjects showed a
substitution at position Y443, known to be within a B cell epitope [47] - all of which is suggestive of immune escape. In addition, in 240_Ch a
potential fitness cost associated mutation was observed at T543A [48].
doi:10.1371/journal.ppat.1002243.g005

Figure 6. Demographic reconstruction of the viral populations. Demographic reconstruction from E1/HVR1 (A,B) and E2 (C,D) sequences for
subjects who developed chronic infection, 23_Ch (A,C) and 240_Ch (B,D). In both subjects, and in both genomic regions, the founder effect and
sequential bottleneck events are evident. The estimated effective population size (Nt, the product of the effective population size and generation
length in days) had a peak value of the order of 103, and then decreased to values of the order of 102. The longer estimate of tMRCA for 23_Ch when
compared to those in Table 1 is likely to be due to the presence of two founder viruses in this subject.
doi:10.1371/journal.ppat.1002243.g006
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support the hypothesis that viral evolution is influenced by the host

cellular immune response, as has been shown in chronic infection

[49–52].

Discussion

This comprehensive examination of the pattern and kinetics of

viral evolution across the HCV genome has revealed that early

primary HCV infection features at least two significant genetic

bottleneck events. The first occurred during or immediately after

transmission, where only one or two founder viruses successfully

initiated infection. The second occurred within 100 DPI,

preceding a decline in HCV RNA level, and in temporal

proximity to seroconversion. This second bottleneck was followed

either by clearance, or by a selective sweep with new variants

emerging from the founder virus to dominate the pre-chronic phase

of infection. These quantitative analyses of early events in primary

HCV infection suggest that strong selective pressures limit viral

evolution both during transmission and early infection.

The demonstration here of a single founder virus in three of four

IDU-transmitted HCV cases is comparable to studies in HIV,

which have shown that the majority of subjects with mucosal

transmission had a single founder virus [14,15,22,53,54]. Inter-

estingly, HIV transmission via IDU was more commonly

associated with multiple viruses, although still less than five

founders [14]. Investigation of HIV Envelope sequences in 20

heterosexual transmission pairs revealed that the founder variant

in the recipient comprised only a small fraction of the viral variants

in the donor (i.e. ,5%) [55]. The only previous study in HCV

using NGS for founder analysis revealed that a small inoculum

could explain the limited diversity observed in early infection in

two genomic structural regions [30]. For both HIV and HCV, it

remains unclear whether the transmission bottleneck is attribut-

able to a low number of variants being transferred between hosts,

or is the result of early evolutionary events where a larger number

of strains are rapidly eliminated due to varying fitness constraints.

As the two founders identified in subject 23_Ch showed relatively

limited diversification from each other, it is also plausible that a

single founder underwent very rapid evolution within the first few

days post-infection in this case.

Very little is known about the phenotypic characteristics of

founder viruses in HCV. The Envelope sequences of founder

viruses in HIV consistently predict CCR5 tropism, concordant

with the evidence for utilization of this co-receptor for infection of

tissue macrophages and dendritic cells in the mucosa [56]. A

recent phenotypic analysis of HCV variants emerging in HCV-

infected liver transplant recipients indicated that strains with

increased viral entry efficiency and lower neutralizing affinity were

preferentially selected in the post-transplant phase [57]. In the

present study, one of the subjects (23_Ch) was infected with at least

two founder viruses that differed at only three sites within the

envelope region. Interestingly, residues 443 and 446 lie within, or

in close proximity to, one of the major CD81 binding domains,

spanning residues 436 – 443 [58], suggesting that founder variant

23BF may have had better infectivity allowing it to out-compete

variant 23AF in the acute phase. Phenotypic analysis of these two

variants is currently underway. On close analysis of some of the

minor variants within subject 23_Ch, evidence of potential

recombination was identified between the two founder variants.

Recombination has been described in RNA viruses, but with

limited evidence in HCV (reviewed in [59]). However, as these

putative recombinant strains are closely related, it is difficult to

distinguish a recombination event from convergent evolution,

where closely related variants incorporate common mutations due

to shared selective pressure [60]. Furthermore, PCR amplification

could also cause recombinant artefacts via template switching.

The novel finding of a genetic bottleneck occurring in the acute

phase in all subjects regardless of outcome, calls for comprehensive

investigation of the determinants of this phenomenon to identify key

factors driving HCV evolution towards chronicity. Consistent with

the results of this study, an early reduction in viral diversity within

the Envelope region was observed during the acute phase in subjects

who subsequently resolved primary HCV infection [19]. This result

is somewhat in contrast with the patterns of viral diversity reported

by Wang and colleagues who analysed the Envelope region using

NGS in three subjects with symptomatic HCV infection [30]. These

authors concluded that there was limited diversification in the early

phase of infection, which then increased during the chronic phase.

However, this conclusion was derived from analysis of a limited

region of the genome, and with only one subject sampled

longitudinally in the acute phase (assuming a median interval of 50

days between infection and symptom onset). Also, quantification of

viral variants was performed only on two short segments of 200 nt

and with limited NGS coverage.

The sequential bottleneck events followed by selective sweeps

reported here highlights the complex population structure of

HCV, and the significance of evolutionary dynamics occurring

early in the infection, namely in the first few weeks post-infection.

A thorough analysis of these dynamics will ultimately guide

understanding of the mechanisms driving establishment of chronic

infection. The within-host evolution of HCV observed here is

consistent with at least two evolutionary models. Firstly, the

observed low effective population size may be the result of strong

constraints on infectivity, where only a few viruses can establish

infection at each generation. Alternatively, the observed temporal

changes in genetic diversity are consistent with a model of

evolution via sequential selective sweeps where strong immune

pressures drive the establishment of a few escape variants, which

then dominate the viral population surviving the bottleneck event.

This model has been proposed to explain the epidemiological

dynamics occurring in influenza infections [17].

The rapid fixations observed in this study suggest the presence

of selective pressures acting on the virus in early infection. The

mean number of generations required for a fixation to occur in a

neutrally-evolving haploid population (as in RNA viruses) is twice

the effective population size, 2 Neff (55). In the case of HCV, using

an approximate estimate of Neff = 2000 derived from this study,

and a generation time of (say) four days, the estimated fixation

time is of the order of years. One explanation for the high fixation

rate is that escape from the immune system is likely to be a major

driver for such mutations, as well as the occurrence of

compensatory mutations. However, the fact that a second genetic

bottleneck occurred in the acute phase of the infection suggests that

chronic infection may not only be the result of escape from host

immune responses, but stochastic events may also be relevant,

such as genetic drift. In this scenario, strains surviving the second

bottleneck may not be those that escaped the immune response,

but merely random survivors [reviewed in 16].

A striking finding in the data presented here is that despite the

high mutation rate of HCV [8], the large number of infected

hepatocytes [61,62], and the rapid turnover of virions [9], the

observed number of substitutions, and of viral variants, during

early infection was relatively small, with the majority of

substitutions occurring at frequencies below 2%. In the present

study up to 60 variants were observed in the HCV Envelope from

viral samples at the first available timepoint (Table S3) and up to

100 variants from pre-chronic samples. These estimates are

consistent with those of Wang and colleagues, however, these
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authors reported only up to four variants in the acute phase, and up

to 100 variants from viruses sampled 200 weeks post-infection

[30]. It is therefore conceivable that there may be a larger

population of variants hidden below the detection threshold in this

analysis (0.1%). Studies of HIV diversity have shown that up to 50

amino acid variants are detected in analyses of small epitope

regions [54], and at least 15–20 variants have been detected across

the full genome [22]. Given that HCV mutates faster than HIV

[8], these data raise the question as to why the observed diversity

in early HCV is comparable to, or less than, the diversity

measured in HIV. Two explanations are possible: firstly, HCV

may have an intrinsically higher fitness cost associated with

mutations – in another RNA virus, vesicular stomatitis virus,

approximately 40% of mutations have been reported to be

associated with extinction [8]. One potential instance of relevance

identified in the dataset reported here, was in subject 240_Ch,

where a CTL epitope in NS3 (surrounding residue 399T) mutated

towards I with increasing frequency over the first two timepoints

before disappearing below detection. Mutations at this site have

been reported to affect viral production [63] (Table S4). A second

potential explanation is that early HCV diversity is significantly

higher than in subjects with early HIV, but the prevalence of the

majority of variants is below the detection threshold – such a

skewed distribution has been reported for foot-and-mouth disease

virus using NGS [33].

In conclusion, this analysis suggests that the early phase of HCV

infection is characterized by strong sequential bottleneck events

where diversity is markedly reduced. Whether this is due to strong

selective pressure from the host immune response and/or viral

fitness cost, remains to be experimentally determined. However,

these data suggest that strong selective pressures limit viral

evolution early in infection both in subjects that clear infection

and those that progress to chronicity. Ultimately, better-informed

strategies to modify these selective pressures may alter this

outcome, potentially including immunotherapeutic approaches

via vaccination, or antiviral therapies to constrain viral replication

and hence escape.

Materials and Methods

HCV cohort
Four early incident cases were recruited from HITS, which is a

prospective cohort of HCV seronegative and HCV RNA negative

prison inmates in New South Wales, Australia [42]. Blood samples

were collected frequently over 24 weeks following initial viremia,

with at least one pre-seroconversion sample collected for each

subject (Table S1). HCV antibody testing was performed as

described [42]. The date of infection was estimated by subtracting

the average pre-seronversion window period, which has been

estimated at 51 days [64–66], from the midpoint between last

seronegative and first seropositive timepoints.

HCV antibody testing was performed using the qualitative

Abbott ARCHITECT anti-HCV chemiluminescent microparticle

immunoassay (Abbott Diagnostics, Abbott Park, IL, USA).

Qualitative HCV RNA detection was performed either using the

VERSANT HCV RNA Qualitative Transcription Mediated

Amplification (TMA) assay (Bayer Diagnostics, Emeryville, CA,

USA; lower limit of detection: 3,200 copies/ml) or COBAS

AmpliPrep/COBAS TaqMan HCV assay (Roche, Branchburg,

NJ, USA; lower limit of detection 223 genome copies/ml).

Ethics statement
Ethical approvals were obtained from Human Research Ethics

Committees of Justice Health (reference number GEN 31/05),

New South Wales Department of Corrective Services (reference

number 05/0884), and the University of New South Wales

(reference numbers 05094, 08081), all located in Sydney,

Australia. Written informed consent was obtained from the

participants.

RNA extraction and amplification of partial 59UTR to 39

NS5B for NGS
Viral RNA was extracted as previously described [67]. Near full

length HCV cDNA was synthesized from 8 ml of viral RNA with

the Superscript III First-Strand Synthesis System for RT-PCR

(Invitrogen, Mt. Waverley, Australia) and a genotype specific

primer (Table S6) according to manufacturers’ instructions. The

region spanning nt 98 to 9314 (nt position designated according to

H77, GenBank accession number AF011751) was amplified from

the cDNA in two (59 UTR - 39 NS2 and 39 NS2 - 39 NS5B) or

three fragments (59 UTR -39 NS2, 39 NS2 - 59 NS4B, and 59

NS4B - 39 NS5B) with genotype specific primers (Table S6) in a

single PCR round with SequalPrep Long PCR kit (Invitrogen).

First round PCRs were performed using 5 ml of cDNA added to

15 ml of PCR reaction mix according to manufacturers’ instruc-

tions (Invitrogen). First round PCR was carried out for 94uC for 2

min, then 10 cycles of 94uC, 50uC, 68uC for 30 sec, 30 sec and

6 min, respectively and followed with an additional 25 cycles of

94uC, 58uC, 52uC for 30 sec, 30 sec and 6 min (plus 20 sec extra

each cycle), respectively. Second round PCR was performed using

5 ml of first round product and an inner set of genotype specific

primers (Table S6) added to 45 ml of PCR reaction mix. Reaction

mix and conditions were as described above with one exception;

the annealing temperature was raised to 60uC.

For the GT3, and some GT1a samples (subject 686 2/3/09,

23/3/09 and 6/4/09, and subject 23 2/6/09, 2/7/09 and 1/9/

09), it was not possible to obtain a single amplicon spanning the 39

NS2 to 39 NS5B and this region was amplified from the first round

product in two fragments, 39 NS2 to 59 NS4B and 59 NS4B to 39

NS5B. Nested round amplification was performed with Platinum

Taq High Fidelity (Invitrogen). Reaction conditions were as

specified in the manufacturers’ instructions with 5 ml of first round

product added as template.

PCR products were electrophoresed on 0.8% agarose in 0.56
TBE buffer and products of the correct size were gel purified with

the QIAquick gel extraction kit (Qiagen) and confirmed to be the

amplicon of interest by direct sequencing on an ABI 3730 DNA

Analyzer (Applied Biosystems, Foster City, CA, US) using dye-

terminator chemistry.

Roche 454 FLX sequencing
PCR amplicons were quantified with the Picogreen dsDNA

assay (Invitrogen). Genome fragments amplified from the same

timepoint were pooled in equimolar amounts to obtain equal

coverage, and submitted for library preparation before subsequent

NGS [23] using 454 Roche FLX Titanium at the Murdoch

University, Perth, Australia. Pyrosequencing was performed in

three independent runs. The first two runs were carried out

without bar-coding. The last run was performed using bar-coding

given the improvement of this technology over the course of the

study. The last run included two samples for each of the subjects

23_Ch, 686_Cl, and 360_Cl. All other samples were analyzed in

the first two runs.

E1/E2 clones
The 39 end of Core to 59 end of p7 region was amplified for

selected timepoints from each subject with genotype specific
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primers (Table S6) and Platinum Taq DNA polymerase High

Fidelity, using the gel purified PCR product submitted for deep

sequencing as the DNA template. The 2534 bp product was TA

ligated into the pGEM-T Easy vector (Promega, Wisconsin,

United States). Individual colonies were screened by PCR for

inserts of the appropriate size with vector specific primers and the

amplicons sequenced.

454 FLX data alignment
454 FLX sequence reads were removed prior to the assembly

stage if they were: shorter than 55 bp and had an average quality

score ,20. The terminal 20 nt were removed from all remaining

reads. These remaining sequences were aligned with a nucleotide

identity threshold of 95% against each subject’s unique consensus

sequence with the alignment tool, MOSAIK (http://bioinformatics.

bc.edu/marthlab/Mosaik). The recommended parameters for 454

data were used in aligning these reads. Each subject’s consensus

sequence was derived from sequencing the gel purified PCR

products on the ABI 3730 DNA Analyzer spanning the near full-

length genome generated at the first viremic timepoint. The quality

of the aligned file was assessed and reads were excluded from the

alignment on the following basis: i) hypermutated sequence

(sequences with more than 5 nt mutations within the first 20

position of the read in either of the ends; ii) reads with indels that

resulted in a frame-shift or reads with a high frequency (5%) of

indels relative to the reference.

SNP detection and haplotype reconstruction
Aligned 454 reads were further analyzed with a Bayesian

probabilistic method implemented in the software package

ShoRAH [68,69]. This software was used to: i) perform error

correction on 454 FLX reads; ii) estimate the distribution of SNPs

and their prevalence, using a detection threshold of 0.1%; iii)

reconstruct HCV variants (haplotypes) in local windows of 400 nt;

iv) reconstruct HCV haplotypes on the Envelope region of the

HCV genome (,1000 nt in length); and v) to estimate the

frequency of occurrence of reconstructed variants within the

sample. The result of this global analysis on the Envelope region

was compared to the available sequences obtained from standard

cloning and sequencing. The ShoRAH analyses were performed

in triplicate for each dataset to ensure that the stochastic nature of

Bayesian statistics based on Monte Carlo Markov Chain

simulations was not affecting the results. Only SNPs and variants

detected in all the three simulation runs were considered for

further analyses.

Further automated cleaning of the SNPs generated via the

ShoRAH method was performed, based on the following criteria:

(i) sequences where the reverse and forward strand differed in a

frequent base substitution, allowing only a difference of 10%

between forward and reverse reads; (ii) SNPs which were only

present at the end of reads; and (iii) if the nucleotides adjacent to

the SNP were part of a homopolymeric stretch. The results from

ShoRAH were also compared to those obtained using a cut-off

method, such as that provided in the software package, Varscan

[70].

For the analysis of the Envelope region of the genome, only

reconstructed variants with frequencies .2.5% were considered

for further analysis (see Supporting Text S1). The probabilistic

nature of the clustering algorithm allows for estimation of the

reliability of predictions. In the Bayesian scenario implemented in

ShoRAH, the fraction of iterations in which a haplotype is

reported estimates the posterior probability of the existence of that

haplotype. This posterior probability provides a confidence level

for the haplotype. Only haplotypes with confidence values

(posterior probabilities) greater than 0.9 are reported. Scripts

and parameter values used for the analyses are available upon

request. Parameters of ShoRAH have been chosen through a

detailed preliminary analysis on the sensitivity of these parameters

in collaboration with Dr Zagordi (personal communication).

Founder virus analysis
PoissonFitter was used to test the hypothesis that a single virus

establishes infection [71]. PoissonFitter performs two tests: one test

is based on the fit of the Poisson model to the frequency

distribution of the Hamming distance observed in each sample;

the other is a topological test to verify that observed frequencies

are distributed according to a star-like phylogeny (for this test, no

formal statistic is available and consequently no p-value is

obtained). In this model the main assumption is that a single

founder virus evolves under neutral evolution, generating a star-

like phylogeny, with a distribution of mutations conforming to a

Poisson distribution [15,45]. This means that early selective

pressures compromise the statistical analysis. For this reason, only

HCV sequences obtained from the first available viremic time

point for each subject were included in the founder virus analysis.

PoissonFitter test was performed on reconstructed viral variants in

E1/E2 region of the genome, as well as on reconstructed variants

obtained from 400 nt windows sliding across the full genome. A

type 1 error threshold a= 0.01 was assumed to conclude whether

the Poisson test was rejected. For the initial analysis, in each

window a conclusion was made whether one, or more than one,

founder virus explained the observations. In cases where the two

tests described above were discordant (i.e. a significant fit with

Poisson test of a single founder virus, but no star-like phylogeny –

which occurred in seven analyses; or the Poisson test suggested

more than one founder while the topological test conformed to a

star-like phylogeny – which occurred in eight analyses) then early

stochastic events were assumed to have occurred, which limited

the validity of the tests. These early events could result from an

early selective pressure, or strong fitness advantage associated with

early mutations. In this analysis, the mutation rate for the HCV

genome was set to 1.261024, as recently estimated [72]. We

assumed the same value was constant across the HCV genome.

Phylogenetic analysis
Sequences from standard cloning and reconstructed haplotypes

were visualized and curated with MEGA [73] and R packages.

Phylogenetic and evolutionary analyses were performed with

PhyML [74]. Trees were constructed from sequences using a GTR

substitution model with gamma invariant sites, as suggested by

analyses using ModelTEST [75]. Trees were visualized with

FigTree. Estimates of tMRCA were performed with PoissonFitter

and with BEAST [76].

Demographic reconstruction of the within-subject viral popu-

lation was performed with skyline plots implemented in BEAST

[47,63]. The analysis was performed using both a strict clock

model and a relaxed molecular clock model. The length of the

MCMC chain was chosen so that the effective sample size (ESS)

for each parameter was . 100. Bayesian factors were then used to

decide the best model. For each subject, the null hypothesis of a

strict clock was not rejected according to the Bayes Factor

calculated from the posterior distributions obtained from each

model (BF,2).

The evolutionary distances were estimated as within-group

mean genetic distances estimated using Maximum Composite

Likelihood (implemented in Mega 5) from reconstructed variants

from NGS in the E1/E2 region of the HCV genome.
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CD8+ epitope predictions
Subjects were HLA typed (Table S2) and MHC Class I

restricted epitopes were predicted using available algorithms in

http://www.immuneepitope.org. For each subject, several differ-

ent algorithms were tested with similar results. For simplicity, the

results presented are derived from prediction with NetMHC

http://www.cbs.dtu.dk/services/NetMHC/, which uses an artifi-

cial neural network for predictions. Known HCV epitopes were

retrieved from the database http://www.immuneepitope.org (last

access, 24 January 2011).

Predicted HLA-A or B restricted epitopes derived from

consensus sequence of the viral genome at each time point and

in each subject, were used to test the hypothesis that the

distribution of Shannon entropy measures in genomic regions

carrying predicted epitopes differ from the distribution of Shannon

entropy values in region without predicted epitopes. Statistical

testing was performed using the Mann-Whitney U test. A one-

tailed test was performed to examine the hypothesis that epitope

regions had higher SE measures than non-epitope regions.

Supporting Information

Figure S1 Founder virus analysis based on E1/HVR1 of
the viral genome. Panels A and B show the analyses for two

subjects who developed chronic infection (240_Ch, 23_Ch)

followed from pre-seroconversion timepoints. Panels C and D

show the analysis for two subjects who cleared the infection

(360_Cl, 686_Cl). Phylogenetic reconstructions and highlighter

plots are shown, illustrating the genetic relatedness between HCV

variant sequences. Names of each sequence are labeled with a

letter (H for haplotype, and C for clone), with the first number

representing the sampling timepoint and with the second number

representing either the prevalence of the haplotype or the clone

number. The phylogenetic trees of subjects 686_Cl, 360_Cl and

240_Ch (panels A, C, D) are consistent with an infection arising

from a single founder. The fit with a Poisson model is also

consistent with a single founder (p-value . 0.1, see text). As shown

by the highlighter plots, founder viruses are identified as the

consensus sequence and coincided with the most prevalent variant

reconstructed from NGS data, (e.g. for subject 686_Cl H1_0.70 is

identical to the consensus sequence and to six clone sequences, see

Highlighter plot). The highlighter plots also show the random

distribution of mutated sites with respect to the founder sequence

(master), which is consistent with a star-like phylogeny. The

phylogenetic analysis in 23_Ch (panel B) is consistent with an

infection originated from two founder viruses (indicated with an

asterisk in the highlighter plot) giving rise to two major clusters,

23AF and 23BF. This is consistent with the rejection of the Poisson

model (p-value = 0). Phylogenetic trees were obtained using

PhyML, with Maximum Likelihood methods using a GTR model

of substitution as suggested by model testing.

(TIF)

Figure S2 Fit of the distribution of Hamming distances
with a Poisson model performed on the Envelope region,
specifically on partial E2 (932 nt). Each panel shows a

subject; the red line is the fit of the distribution of Hamming

distances (histogram) calculated from sequences derived from the

reconstruction of NGS data and from standard cloning. The poor

fit outcome for subject 23_Ch indicated the presence of more than

one founder virus. See also Table S3.

(TIF)

Figure S3 Evolutionary dynamics of HCV variants over
the E1/HVR1 region of the genome. Sequence analyses of

the two subjects who developed chronic infection, 240_Ch (A),

and 23_Ch (B) revealed the presence of selective sweeps. These

sweeps led to the emergence of new variants that replaced the

founder viruses (identified with an asterisk). Phylogenetic trees (left

panels) display nucleotide sequences of reconstructed haplotypes

derived from NGS data and clonal sequences. Names of each

sequence are labeled with a letter (H for haplotype and C for

clone), with the first number representing the sampling timepoint

and with the second number representing either the prevalence of

the haplotype or the clone number. Colors are also used to portray

the sampling timepoint (see legend). Infection dynamics for subject

240_Ch are consistent with a single founder, identified with the

most prevalent strain of cluster 240A (H2_0.65, indicated with an

asterisk), and with clones C2_6, and C2_17, and with the

consensus of the sequences from time-point 1. The pre-chronic

phase (corresponding with the color-coded time ranges 5 and 6) of

infection shows the emergence and dominance of a new subgroup

of viruses. 23_Ch has two founder viruses that successfully initiated

the infection (H1_0.25 and H1_0.27, indicated with an asterisk). A

new cluster emerged from the founder cluster and became

dominant in the pre-chronic phase. Trees are calculated using

Maximum Likelihood method (implemented in PhyML).

(TIF)

Figure S4 Evolutionary dynamics of HCV variants over
the partial NS3 region of the genome. Sequence analyses

(over 400 nt window) of the two subjects who developed chronic

infection, 240_Ch (panel A), and 23_Ch (panel B) revealed the

presence of selective sweeps. These sweeps led to the emergence of

new variants that replaced the founder virus(es). Phylogenetic trees

display nucleotide sequences of reconstructed haplotypes derived

from NGS data and clonal sequences. Names of each sequence are

labeled with a letter (H for haplotype), with the first number

representing the sampling timepoint and with the second number

representing the prevalence of the haplotype. Colors are also used

to portray the sampling timepoint (see legend).

(TIF)

Figure S5 Demographic reconstruction of the viral
populations. Demographic reconstruction from E1-HVR1 and

E2 sequences for subjects who cleared the infection (686_Cl and

360_Cl). In both subjects and in both genomic regions the

estimated effective population size (Nt, the product of the effective

population size and generation length in days) is higher than in

chronic subjects with peak around 104. Subject 686_Cl shows a

moderate increase in viral diversity over time, corroborating resuts

from Shannon entropy and Poisson-Fitter tests.

(TIF)

Table S1 Demographic and laboratory characteristics of the

subjects.

(DOC)

Table S2 Summary of the next generation sequencing (NGS)

data obtained for each subject.

(DOC)

Table S3 PoissonFitter test results for the single founder virus

analysis for each subject.

(DOC)

Table S4 Phenotypic analyses of the non-synonymous substitu-

tions over the course of the infection.

(XLS)

Table S5 Analysis of amino acid substitutions within predicted

HLA restricted cytotoxic T cell epitopes.

(DOC)
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Table S6 Primers used to amplify viral sequences.

(DOC)

Text S1 Haplotype reconstruction and method valida-
tion. Detailed information on the haplotype reconstruction from

NGS data. This methodology was validated with a 454 FLX run

performed in duplicate on four unique plasmids with known sites

of variation.

(DOC)
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