8 research outputs found

    Heterologous protein production in the yeast Kluyveromyces lactis

    No full text
    Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression

    Heterologous protein production in the yeast Kluyveromyces lactis

    No full text
    Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression

    Performance evaluation of Annular Arrays in practice: The measurement of phase and amplitude patterns of radio-frequency deep body applicators

    No full text
    An approach to a solution of two major problems in operating Annular Phased Arrays in deep body hyperthermia is presented: an E-field sensor capable of measuring phase and amplitude at 70 MHz and the concept of a power transmission factor to determine the effective amplitude of each applicator. In the four-waveguide Phased Array operating at 70 MHz, which is in clinical use at the department of Radiotherapy of the Academic Medical Center (AMC), the incident fields of the waveguides were scanned in phase and amplitude over the complete aperture midplane, inside an elliptical and a square phantom filled with saline. As a check on the application of the superposition principle, superpositions of the incident fields were compared with the electric field in the measured interference set-ups. With all four applicators radiating at equal amplitude and in phase, the maximum difference over the complete midplane of the phantom between superimposed and measured interference scans was 20% and 10° in the elliptical phantom, and 20% and 30° in the square phantom. After having determined nominal amplitude and phase patterns by a vector probe, any interference set-up can be superimposed from measurement of the actual incident field of each applicator. Therefore, the availability of a vector sensor as described here will contribute to solve a problem of hyperthermia quality assurance: the performance evaluation of Phased Arrays

    Essential Roles for GPI-anchored Proteins in African Trypanosomes Revealed Using Mutants Deficient in GPI8

    Get PDF
    The survival of Trypanosoma brucei, the causative agent of Sleeping Sickness and Nagana, is facilitated by the expression of a dense surface coat of glycosylphosphatidylinositol (GPI)-anchored proteins in both its mammalian and tsetse fly hosts. We have characterized T. brucei GPI8, the gene encoding the catalytic subunit of the GPI:protein transamidase complex that adds preformed GPI anchors onto nascent polypeptides. Deletion of GPI8 (to give Δgpi8) resulted in the absence of GPI-anchored proteins from the cell surface of procyclic form trypanosomes and accumulation of a pool of non–protein-linked GPI molecules, some of which are surface located. Procyclic Δgpi8, while viable in culture, were unable to establish infections in the tsetse midgut, confirming that GPI-anchored proteins are essential for insect-parasite interactions. Applying specific inducible GPI8 RNAi with bloodstream form parasites resulted in accumulation of unanchored variant surface glycoprotein and cell death with a defined multinuclear, multikinetoplast, and multiflagellar phenotype indicative of a block in cytokinesis. These data show that GPI-anchored proteins are essential for the viability of bloodstream form trypanosomes even in the absence of immune challenge and imply that GPI8 is important for proper cell cycle progression

    Histone Acetyltransferases: Targets and Inhibitors

    No full text
    corecore