20 research outputs found

    Barbie-cueing weight perception

    Get PDF
    It was previously reported that Barbie feels heavier than Ken when both dolls are matched for mass. However, we felt it was unclear from this earlier report if the effects went beyond a typical size-weight illusion. By providing better controls, we conclude more confidently that doll features other than size influence weight perception. Specifically, conceptual knowledge, in the form of culturally reinforced biases, seems to affect how we perceive their weight.Elizabeth J. Saccone and Philippe A. Chouinar

    The influence of size in weight illusions is unique relative to other object features

    No full text
    Research into weight illusions has provided valuable insight into the functioning of the human perceptual system. Associations between the weight of an object and its other features, such as its size, material, density, conceptual information, or identity, influence our expectations and perceptions of weight. Earlier accounts of weight illusions underscored the importance of previous interactions with objects in the formation of these associations. In this review, we propose a theory that the influence of size on weight perception could be driven by innate and phylogenetically older mechanisms, and that it is therefore more deep-seated than the effects of other features that influence our perception of an object's weight. To do so, we first consider the different associations that exist between the weight of an object and its other features and discuss how different object features influence weight perception in different weight illusions. After this, we consider the cognitive, neurological, and developmental evidence, highlighting the uniqueness of size-weight associations and how they might be reinforced rather than driven by experience alone. In the process, we propose a novel neuroanatomical account of how size might influence weight perception differently than other object features do.Elizabeth J. Saccone and Philippe A. Chouinar

    A meta-analysis of the size-weight and material-weight illusions

    No full text
    The current study comprises the first systematic meta-analysis of weight illusions. We obtained descriptive data from studies in which subjective heaviness estimates were made for pairs or groups of objects that had the same mass and different volumes (size-weight illusion; SWI) or different apparent material properties (material-weight illusion; MWI). Using these data, we calculated mean effect sizes to represent illusion strength. Other study details, including stimulus mass, volume, density, and degree of visual and somatosensory access to the stimuli were also recorded to quantify the contribution of these variables to effect sizes for the SWI. The results indicate that the SWI has a larger mean effect size than the MWI and that the former is consistent in strength when information about stimulus size is gained through somatosensory channels, regardless of visual access. The SWI is weaker when only the visual system provides size information. Effect sizes for the SWI were larger when there was a greater difference in volume across the stimuli. There was also a positive correlation between SWI strength and the difference in physical density across the different experimental stimuli, even after controlling for volume differences. Together, we argue that these findings provide support for theories of weight illusions that are based on conceptual expectancies as well as those that are based on bottom-up processing of physical density. We further propose that these processes, which have been considered dichotomously in the past, may not be mutually exclusive from each other and could both contribute to our perception of weight when we handle objects in everyday life.Elizabeth J. Saccone, Oriane Landry, Philippe A. Chouinar
    corecore