703 research outputs found

    Influence of Surfactants on the Activity Powders of Barium Hexaferrite, Prepared by Wet Grinding

    Get PDF
    Study the influence of citric acid and isopropyl alcohol on processes of wet grinding mixture of starting ferrite constituting components and synthesized ferrite charge. Found that the introduction of additives during wet grinding allows to significantly reduce the temperature of synthesis and sintering ferrite raw blanks. Increased activity of powders is explained by the formation of active the gelled layers on the surface of particles in the process of wet grinding

    Influence of Surfactants on the Activity Powders of Barium Hexaferrite, Prepared by Wet Grinding

    Get PDF
    Study the influence of citric acid and isopropyl alcohol on processes of wet grinding mixture of starting ferrite constituting components and synthesized ferrite charge. Found that the introduction of additives during wet grinding allows to significantly reduce the temperature of synthesis and sintering ferrite raw blanks. Increased activity of powders is explained by the formation of active the gelled layers on the surface of particles in the process of wet grinding

    Interference of two electrons entering a superconductor

    Full text link
    The subgap conductivity of a normal-superconductor (NS) tunnel junction is thought to be due to tunneling of two electrons. There is a strong interference between these two electrons, originating from the spatial phase coherence in the normal metal at a mesoscopic length scale and the intrinsic coherence of the superconductor. We evaluated the interference effect on the transport through an NS junction. We propose the layouts to observe drastic Aharonov-Bohm and Josephson effects.Comment: 8 pages REVTex, [PostScript] figures upon reques

    Self-consistent field theory of polarized BEC: dispersion of collective excitation

    Full text link
    We suggest the construction of a set of the quantum hydrodynamics equations for the Bose-Einstein condensate (BEC), where atoms have the electric dipole moment. The contribution of the dipole-dipole interactions (DDI) to the Euler equation is obtained. Quantum equations for the evolution of medium polarization are derived. Developing mathematical method allows to study effect of interactions on the evolution of polarization. The developing method can be applied to various physical systems in which dynamics is affected by the DDI. Derivation of Gross-Pitaevskii equation for polarized particles from the quantum hydrodynamics is described. We showed that the Gross-Pitaevskii equation appears at condition when all dipoles have the same direction which does not change in time. Comparison of the equation of the electric dipole evolution with the equation of the magnetization evolution is described. Dispersion of the collective excitations in the dipolar BEC, either affected or not affected by the uniform external electric field, is considered using our method. We show that the evolution of polarization in the BEC leads to the formation of a novel type of the collective excitations. Detailed description of the dispersion of collective excitations is presented. We also consider the process of wave generation in the polarized BEC by means of a monoenergetic beam of neutral polarized particles. We compute the possibilities of the generation of Bogoliubov and polarization modes by the dipole beam.Comment: 16 pages, 15 figures. arXiv admin note: substantial text overlap with arXiv:1106.082

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    The Bose-Einstein correlation function C2(Q)C_2(Q) from a Quantum Field Theory point of view

    Full text link
    We show that a recently proposed derivation of Bose-Einstein correlations (BEC) by means of a specific version of thermal Quantum Field Theory (QFT), supplemented by operator-field evolution of the Langevin type, allows for a deeper understanding of the possible coherent behaviour of the emitting source and a clear identification of the origin of the observed shape of the BEC function C2(Q)C_2(Q). Previous conjectures in this matter obtained by other approaches are confirmed and have received complementary explanation.Comment: Some misprints corrected. To be publishe in Phys. Rev.

    Magnetic fluctuations in 2D metals close to the Stoner instability

    Full text link
    We consider the effect of potential disorder on magnetic properties of a two-dimensional metallic system (with conductance g1g\gg 1) when interaction in the triplet channel is so strong that the system is close to the threshold of the Stoner instability. We show, that under these conditions there is an exponentially small probability for the system to form local spin droplets which are local regions with non zero spin density. Using a non-local version of the optimal fluctuation method we find analytically the probability distribution and the typical spin of a local spin droplet (LSD). In particular, we show that both the probability to form a LSD and its typical spin are independent of the size of the droplet (within the exponential accuracy). The LSDs manifest themselves in temperature dependence of observable quantities. We show, that below certain cross-over temperature the paramagnetic susceptibility acquires the Curie-like temperature dependence, while the dephasing time (extracted from magneto-resistance measurements) saturates.Comment: 15 pages, 4 figure

    Andreev reflections in the pseudogap state of cuprate supercondcutors

    Full text link
    We propose that, if the pseudogap state in the cuprate superconductors can be described in terms of the phase-incoherent preformed pairs, there should exist Andreev reflection from these pairs even above the superconducting transition temperature, TcT_c. After giving qualitative arguments for this effect, we present more quantitative calculations based on the Bogoliubov--de Gennes equation. Experimental observations of the effects of Andreev reflections above TcT_c---such as an enhanced tunneling conductance below the gap along the copper oxide plane---could provide unambiguous evidence for the preformed pairs in the pseudogap state.Comment: 5 pages, 1 figur

    Decay of the metastable phase in d=1 and d=2 Ising models

    Full text link
    We calculate perturbatively the tunneling decay rate Γ\Gamma of the metastable phase in the quantum d=1 Ising model in a skew magnetic field near the coexistence line 0<hx<1,hz00<h_{x}<1, h_{z}\to -0 at T=0. It is shown that Γ\Gamma oscillates in the magnetic field hzh_{z} due to discreteness of the excitation energy spectrum. After mapping of the obtained results onto the extreme anisotropic d=2 Ising model at T<TcT<T_c, we verify in the latter model the droplet theory predictions for the free energy analytically continued to the metastable phase. We find also evidence for the discrete-lattice corrections in this metastable phase free energy.Comment: 4 pages, REVTe

    Existence of the Abrikosov vortex state in two-dimensional type-II superconductors without pinning

    Full text link
    Theory alternative to the vortex lattice melting theories is advertised. The vortex lattice melting theories are science fiction cond-mat/9811051 because the Abrikosov state is not the vortex lattice with crystalline long-range order. Since the fluctuation correction to the Abrikosov solution is infinite in the thermodynamic limit (K.Maki and H.Takayama, 1972) any fluctuation theory of the mixed state should consider a superconductor with finite sizes. Such nonperturbative theory for the easiest case of two-dimensional superconductor in the lowest Landau level approximation is presented in this work. The thermodynamic averages of the spatial average order parameter and of the Abrikosov parameter βa\beta_{a} are calculated. It is shown that the position H_{c4} of the transition into the Abrikosov state (i.e. in the mixed state with long-range phase coherence) depends strongly on sizes of two-dimensional superconductor. Fluctuations eliminate the Abrikosov vortex state in a wide region of the mixed state of thin films with real sizes and without pinning disorders, i.e. H_{c4} << H_{c2}. The latter has experimental corroboration in Phys.Rev.Lett. 75, 2586 (1995).Comment: 4 pages, 0 figure
    corecore