7 research outputs found

    Calibration of a novel microstructural damage model for wire bonds

    Get PDF
    In a previous paper, a new time-domain damage-based physics model was proposed for the lifetime prediction of wire bond interconnects in power electronic modules. Unlike cycle-dependent life prediction methodologies, this model innovatively incorporates temperature- and time-dependent properties so that rate-sensitive processes associated with the bond degradation can be accurately represented. This paper presents the work on the development and calibration of the damage model by linking its core parameter, i.e., “damage,” to the strain energy density, which is a physically quantifiable materials property. Isothermal uniaxial tensile data for unbonded pure aluminum wires (99.999%) have been used to develop constitutive functions, and the model has been calibrated by the derived values of the strain energy density

    Reliability of thick Al wire: a study of the effects of wire bonding parameters on thermal cycling degradation rate using non-destructive methods

    Get PDF
    The effect of bonding parameters on the reliability of thick Al wire bond is investigated. Samples were prepared with 25 different designs with 5 different bonding parameters such as time, ultrasonic power, begin- force, end-force and touch-down steps (pre-compression) with 5 levels. The bond signals of ultrasonic generator were collected during bonding in order to obtain prior quality information of bonded wires. 3D x-ray tomography was then used to evaluate bond quality during passive thermal cycling between -55 °C and 125 °C. Tomography datasets were obtained from the as-bonded condition and during cycling. The results clearly show ultrasonic power, appropriate levels of begin-force and touch-down steps are all important for achieving a well attached and reliable bond. Analysis of the virtual cross-sections indicates a good correlation between the bond signal (i.e. the initial bond quality) and wire bond damage/ degradation rate. An improved understanding of the wire bonding process was achieved by observing the effect of the complex interaction of bonding parameters on the ultrasonic generator signals and degradation rate under thermal cycling

    Response to comments on “A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds”

    Get PDF
    Comments have recently been made by Yuan et al. [1] to deny one statement in our paper [2], Eq. (21) in Wagner's paper [3] can be used to accurately calculate the integrated interdiffusion coefficient for an incremental diffusion couple only under the assumption of constant Molar volume for all phases. We respond here to explain how they misunderstood our mathematical deduction, made a mistake in deriving a couple of equations, falsely cited our work and employed unjustifiable assumption. As a result, we believe that their comments are invalid to deny our statement
    corecore