41,655 research outputs found

    Quantum kk-core conduction on the Bethe lattice

    Full text link
    Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least k−1k-1 neighboring occupied bonds, i.e. kk-core diluted. In the classical case, we find the onset of conduction for k=2k=2 is continuous, while for k=3k=3, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3k=3 that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig

    Medium polarization in asymmetric nuclear matter

    Full text link
    The influence of the core polarization on the effective nuclear interaction of asymmetric nuclear matter is calculated in the framework of the induced interaction theory. The strong isospin dependence of the density and spin density fluctuations is studied along with the interplay between the neutron and proton core polarizations. Moving from symmetric nuclear matter to pure neutron matter the crossover of the induced interaction from attractive to repulsive in the spin singlet state is determined as a function of the isospin imbalance.The density range in which it occurs is also determined. For the spin triplet state the induced interaction turns out to be always repulsive. The implications of the results for the neutron star superfluid phases are shortly discussed.Comment: 6 pages, 4 figure

    Tuning Jeff = 1/2 Insulating State via Electron Doping and Pressure in Double-Layered Iridate Sr3Ir2O7

    Get PDF
    Sr3Ir2O7 exhibits a novel Jeff=1/2 insulating state that features a splitting between Jeff=1/2 and 3/2 bands due to spin-orbit interaction. We report a metal-insulator transition in Sr3Ir2O7 via either dilute electron doping (La3+ for Sr2+) or application of high pressure up to 35 GPa. Our study of single-crystal Sr3Ir2O7 and (Sr1-xLax)3Ir2O7 reveals that application of high hydrostatic pressure P leads to a drastic reduction in the electrical resistivity by as much as six orders of magnitude at a critical pressure, PC = 13.2 GPa, manifesting a closing of the gap; but further increasing P up to 35 GPa produces no fully metallic state at low temperatures, possibly as a consequence of localization due to a narrow distribution of bonding angles {\theta}. In contrast, slight doping of La3+ ions for Sr2+ ions in Sr3Ir2O7 readily induces a robust metallic state in the resistivity at low temperatures; the magnetic ordering temperature is significantly suppressed but remains finite for (Sr0.95La0.05)3Ir2O7 where the metallic state occurs. The results are discussed along with comparisons drawn with Sr2IrO4, a prototype of the Jeff = 1/2 insulator.Comment: five figure

    Shaping of molecular weight distribution by iterative learning probability density function control strategies

    Get PDF
    A mathematical model is developed for the molecular weight distribution (MWD) of free-radical styrene polymerization in a simulated semi-batch reactor system. The generation function technique and moment method are employed to establish the MWD model in the form of Schultz-Zimmdistribution. Both static and dynamic models are described in detail. In order to achieve the closed-loop MWD shaping by output probability density function (PDF) control, the dynamic MWD model is further developed by a linear B-spline approximation. Based on the general form of the B-spline MWD model, iterative learning PDF control strategies have been investigated in order to improve the MWD control performance. Discussions on the simulation studies show the advantages and limitations of the methodology

    Pressure-Induced Insulating State in Ba1-xRExIrO3 (RE = Gd, Eu) Single Crystals

    Full text link
    BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3

    Screening Effects in Superfluid Nuclear and Neutron Matter within Brueckner Theory

    Get PDF
    Effects of medium polarization are studied for 1S0^1S_0 pairing in neutron and nuclear matter. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The selfenergy corrections are consistently included resulting in a strong depletion of the Fermi surface. All medium effects are calculated based on the Brueckner theory. The 1S0^1S_0 gap is determined from the generalized gap equation. The selfenergy corrections always lead to a quenching of the gap, which is enhanced by the screening effect of the pairing potential in neutron matter, whereas it is almost completely compensated by the antiscreening effect in nuclear matter.Comment: 8 pages, 6 Postscript figure

    Competing Ground States in Triple-layered Sr4Ru3O10: Verging on Itinerant Ferromagnetism with Critical Fluctuations

    Full text link
    Sr4Ru3O10 is characterized by a sharp metamagnetic transition and ferromagnetic behavior occurring within the basal plane and along the c-axis, respectively. Resistivity at magnetic field, B, exhibits low-frequency quantum oscillations when B||c-axis and large magnetoresistivity accompanied by critical fluctuations driven by the metamagnetism when B^c-axis. The complex behavior evidenced in resistivity, magnetization and specific heat presented is not characteristic of any obvious ground states, and points to an exotic state that shows a delicate balance between fluctuations and order.Comment: 18 pages, 4 figure

    Orbitally-driven Behavior: Mott Transition, Quantum Oscillations and Colossal Magnetoresistance in Bilayered Ca3Ru2O7

    Full text link
    We report recent transport and thermodynamic experiments over a wide range of temperatures for the Mott-like system Ca3Ru2O7 at high magnetic fields, B, up to 30 T. This work reveals a rich and highly anisotropic phase diagram, where applying B along the a-, b-, and c-axis leads to vastly different behavior. A fully spin-polarized state via a first order metamagnetic transition is obtained for B||a, and colossal magnetoresistance is seen for B||b, and quantum oscillations in the resistivity are observed for B||c, respectively. The interplay of the lattice, orbital and spin degrees of freedom are believed to give rise to this strongly anisotropic behavior.Comment: 26 pages and 8 figure
    • …
    corecore