5,117 research outputs found

    Overcoming loss of contrast in atom interferometry due to gravity gradients

    Get PDF
    Long-time atom interferometry is instrumental to various high-precision measurements of fundamental physical properties, including tests of the equivalence principle. Due to rotations and gravity gradients, the classical trajectories characterizing the motion of the wave packets for the two branches of the interferometer do not close in phase space, an effect which increases significantly with the interferometer time. The relative displacement between the interfering wave packets in such open interferometers leads to a fringe pattern in the density profile at each exit port and a loss of contrast in the oscillations of the integrated particle number as a function of the phase shift. Paying particular attention to gravity gradients, we present a simple mitigation strategy involving small changes in the timing of the laser pulses which is very easy to implement. A useful representation-free description of the state evolution in an atom interferometer is introduced and employed to analyze the loss of contrast and mitigation strategy in the general case. (As a by-product, a remarkably compact derivation of the phase-shift in a general light-pulse atom interferometer is provided.) Furthermore, exact results are obtained for (pure and mixed) Gaussian states which allow a simple interpretation in terms of the alignment of Wigner functions in phase-space. Analytical results are also obtained for expanding Bose-Einstein condensates within the time-dependent Thomas-Fermi approximation. Finally, a combined strategy for rotations and nonaligned gravity gradients is considered as well.Comment: 14+7 pages including appendices, 9 figures; v2 minor changes, matches published versio

    Dynamic performance analysis of a fuel-control valve for use in airbreathing engine research

    Get PDF
    Dynamic performance analysis of fast-response fuel control valve for air breathing engine researc

    Overview of progress in neutrino scattering measurements

    Full text link
    Recent progress in neutrino scattering experiments with few GeV neutrino beams is reviewed, focusing on new experimental input since the beginning of the NuInt workshop series in 2001. Progress in neutrino quasi-elastic scattering, resonance production, coherent pion production, scattering in the transition region between the resonance and deep inelastic regimes, and nuclear effects in neutrino-nucleus scattering, is discussed.Comment: To appear in the proceedings of 5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), Batavia, Illinois, 30 May - 3 Jun 2007. Submitted to AIP Conf.Pro

    Why understanding neutrino interactions is important for oscillation physics

    Full text link
    Uncertainties in knowledge of neutrino interactions directly impact the ability to measure the parameters of neutrino oscillation. Experiments which make use of differing technologies and neutrino beams are sensitive to different uncertainties. Several experimental and theoretical issues are reviewed.Comment: Proceedings prepared for the Fifth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), May 30-June 2, 2007. Proceedings to be published by the AIP (6 pages
    corecore