480 research outputs found

    Rational Approximate Symmetries of KdV Equation

    Full text link
    We construct one-parameter deformation of the Dorfman Hamiltonian operator for the Riemann hierarchy using the quasi-Miura transformation from topological field theory. In this way, one can get the approximately rational symmetries of KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure

    On a Order Reduction Theorem in the Lagrangian Formalism

    Full text link
    We provide a new proof of a important theorem in the Lagrangian formalism about necessary and sufficient conditions for a second-order variational system of equations to follow from a first-order Lagrangian.Comment: 9 pages, LATEX, no figures; appear in Il Nuovo Cimento

    On bi-Hamiltonian deformations of exact pencils of hydrodynamic type

    Full text link
    In this paper we are interested in non trivial bi-Hamiltonian deformations of the Poisson pencil \omega_{\lambda}=\omega_2+\lambda \omega_1=u\delta'(x-y)+\f{1}{2}u_x\delta(x-y)+\lambda\delta'(x-y). Deformations are generated by a sequence of vector fields {X2,X4,...}\{X_2, X_4,...\}, where each X2kX_{2k} is homogenous of degree 2k2k with respect to a grading induced by rescaling. Constructing recursively the vector fields X2kX_{2k} one obtains two types of relations involving their unknown coefficients: one set of linear relations and an other one which involves quadratic relations. We prove that the set of linear relations has a geometric meaning: using Miura-quasitriviality the set of linear relations expresses the tangency of the vector fields X2kX_{2k} to the symplectic leaves of ω1\omega_1 and this tangency condition is equivalent to the exactness of the pencil ωλ\omega_{\lambda}. Moreover, extending the results of [17], we construct the non trivial deformations of the Poisson pencil ωλ\omega_{\lambda}, up to the eighth order in the deformation parameter, showing therefore that deformations are unobstructed and that both Poisson structures are polynomial in the derivatives of uu up to that order.Comment: 34 pages, revised version. Proof of Theorem 16 completely rewritten due to an error in the first versio

    Analytic structure of radiation boundary kernels for blackhole perturbations

    Full text link
    Exact outer boundary conditions for gravitational perturbations of the Schwarzschild metric feature integral convolution between a time-domain boundary kernel and each radiative mode of the perturbation. For both axial (Regge-Wheeler) and polar (Zerilli) perturbations, we study the Laplace transform of such kernels as an analytic function of (dimensionless) Laplace frequency. We present numerical evidence indicating that each such frequency-domain boundary kernel admits a "sum-of-poles" representation. Our work has been inspired by Alpert, Greengard, and Hagstrom's analysis of nonreflecting boundary conditions for the ordinary scalar wave equation.Comment: revtex4, 14 pages, 12 figures, 3 table

    Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities

    Full text link
    Using Lie group theory and canonical transformations we construct explicit solutions of nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons and discuss other applications of interest to the field of nonlinear matter waves

    The Moyal bracket and the dispersionless limit of the KP hierarchy

    Get PDF
    A new Lax equation is introduced for the KP hierarchy which avoids the use of pseudo-differential operators, as used in the Sato approach. This Lax equation is closer to that used in the study of the dispersionless KP hierarchy, and is obtained by replacing the Poisson bracket with the Moyal bracket. The dispersionless limit, underwhich the Moyal bracket collapses to the Poisson bracket, is particularly simple.Comment: 9 pages, LaTe

    Involutive orbits of non-Noether symmetry groups

    Full text link
    We consider set of functions on Poisson manifold related by continues one-parameter group of transformations. Class of vector fields that produce involutive families of functions is investigated and relationship between these vector fields and non-Noether symmetries of Hamiltonian dynamical systems is outlined. Theory is illustrated with sample models: modified Boussinesq system and Broer-Kaup system.Comment: LaTeX 2e, 10 pages, no figure

    The general dielectric tensor for bi-kappa magnetized plasmas

    Get PDF
    In this paper we derive the dielectric tensor for a plasma containing particles described by an anisotropic superthermal (bi-kappa) velocity distribution function. The tensor components are written in terms of the two-variables kappa plasma special functions, recently defined by Gaelzer and Ziebell [Phys. Plasmas 23, 022110 (2016)]. We also obtain various new mathematical properties for these functions, which are useful for the analytical treatment, numerical implementation and evaluation of the functions and, consequently, of the dielectric tensor. The formalism developed here and in the previous paper provides a mathematical framework for the study of electromagnetic waves propagating at arbitrary angles and polarizations in a superthermal plasma.Comment: Accepted for publication in Physics of Plasma

    Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Full text link
    The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.Comment: 13 page

    Complete integrability of derivative nonlinear Schr\"{o}dinger-type equations

    Full text link
    We study matrix generalizations of derivative nonlinear Schr\"{o}dinger-type equations, which were shown by Olver and Sokolov to possess a higher symmetry. We prove that two of them are `C-integrable' and the rest of them are `S-integrable' in Calogero's terminology.Comment: 14 pages, LaTeX2e (IOP style), to appear in Inverse Problem
    • …
    corecore