148 research outputs found

    Discrimination of papillary thyroid cancer from non-cancerous thyroid tissue based on lipid profiling by mass spectrometry imaging

    Get PDF
    Introduction: The distinction of papillary thyroid carcinomas from benign thyroid lesions has important implication for clinical management. Classification based on histopathological features can be supported by molecular biomarkers, including lipidomic signatures, identified with the use of high-throughput mass spectrometry techniques. Formalin fixation is a standard procedure for stabilization and preservation of tissue samples, therefore this type of samples constitute highly valuable source of clinical material for retrospective molecular studies. In this study we used mass spectrometry imaging to detect lipids discriminating papillary cancer from not cancerous thyroid directly in formalin-fixed tissue sections. Material and methods: For this purpose imaging and profiling of lipids present in non-malignant and cancerous thyroid tissue specimens were conducted. High resolution MALDI-Q-Ion Mobility-TOF-MS technique was used for lipidomic analysis of formalin fixed thyroid tissue samples. Lipids were identified by the comparison of the exact molecular masses and fragmentation pathways of the protonated molecule ions, recorded during the MS/MS experiments, with LIPID MAPS database. Results: Several phosphatidylcholines (32:0, 32:1, 34:1 and 36:3), sphingomyelins (34:1 and 36:1) and phosphatidic acids (36:2 and 36:3) were detected and their abundances were significantly higher in cancerous tissue compared to non-cancerous tissue. The same lipid species were detected in formalin-fixed as in fresh-frozen tissue, but [M + Na]+ions were the most abundant in formalin fixed whereas [M + K]+ions were predominant in fresh tissue. Conclusions: Our results prove the viability of MALDI-MSI for analysis of lipid distribution directly in formalin-fixed tissue, and the potential for their use in the classification of thyroid diseases

    Small DNA Pieces in C. elegans Are Intermediates of DNA Fragmentation during Apoptosis

    Get PDF
    While studying small noncoding RNA in C. elegans, we discovered that protocols used for isolation of RNA are contaminated with small DNA pieces. After electrophoresis on a denaturing gel, the DNA fragments appear as a ladder of bands, ∼10 nucleotides apart, mimicking the pattern of nuclease digestion of DNA wrapped around a nucleosome. Here we show that the small DNA pieces are products of the DNA fragmentation that occurs during apoptosis, and correspondingly, are absent in mutant strains incapable of apoptosis. In contrast, the small DNA pieces are present in strains defective for the engulfment process of apoptosis, suggesting they are produced in the dying cell prior to engulfment. While the small DNA pieces are also present in a number of strains with mutations in predicted nucleases, they are undetectable in strains containing mutations in nuc-1, which encodes a DNase II endonuclease. We find that the small DNA pieces can be labeled with terminal deoxynucleotidyltransferase only after phosphatase treatment, as expected if they are products of DNase II cleavage, which generates a 3′ phosphate. Our studies reveal a previously unknown intermediate in the process of apoptotic DNA fragmentation and thus bring us closer to defining this important pathway

    TRAIL treatment provokes mutations in surviving cells

    Get PDF
    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling, and may overcome resistance to treatments that induce intrinsic apoptosis. As death receptor ligation does not damage DNA as a primary mechanism of pro-apoptotic action, we hypothesized that surviving cells would remain genetically unscathed, suggesting that death ligand-based therapies may avoid some of the adverse effects associated with traditional cancer treatments. Surprisingly, however, treatment with sub-lethal concentrations of TRAIL or FasL was mutagenic. Mutations arose in viable cells that contained active caspases, and overexpression of the caspase-8 inhibitor crmA or silencing of caspase-8 abolished TRAIL-mediated mutagenesis. Downregulation of the apoptotic nuclease caspase-activated DNAse (CAD)/DNA fragmentation factor 40 (DFF40) prevented the DNA damage associated with TRAIL treatment. Although death ligands do not need to damage DNA in order to induce apoptosis, surviving cells nevertheless incur DNA damage after treatment with these agents

    The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA Degradation and Development

    Get PDF
    DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3′ OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1's ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3′ OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation

    Seminiferous tubule transfection in vitro to define post-meiotic gene regulation

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.rbej.com/content/7/1/67Background: Post-meiotically expressed genes in the testis are essential for the proper progression of spermatogenesis, and yet, aside from the construction of individual transgenic mice using specific promoters to drive reporter plasmids, there are only very limited possibilities for relevant and quantitative analysis of gene promoters. This is due to the special nature of post-meiotic haploid cells, which to date are not represented in any appropriate cell-lines. This article reports the development of novel methodology using isolated and cultured rat seminiferous tubules in a multiwell format, into which promoter-reporter constructs can be introduced by a combination of microinjection and electroporation. Methods: Culture conditions were developed which allowed the continued incubation of isolated rat seminiferous tubules for up to 48 h without obvious cell death and loss of post-meiotic cells. Transfection of intact seminiferous tubules by microinjection and electroporation was optimized to achieve high expression efficiencies of control plasmids, using either fluorescent protein or luciferase as reporters, thereby allowing both morphological as well as quantitative assessment. Results: Successful transfection was achieved into all cell types except for mature spermatozoa. However, there appeared to be only limited cell-type specificity for the promoters used, even though these had appeared to be specific when used in transgenic animals. Conclusion: We have devised a methodology which allows relatively high throughput analysis of post-meiotic gene promoters into primary cells of intact seminiferous tubules. An apparent lack of cell-type specificity suggests that the gene fragments used do not contain sufficient targeting information, or that the transient episomal expression of the constructs does not encourage appropriate expression specificity. The results also highlight the doubtful interpretation of many studies using heterologous transfection systems to analyse post-meiotically expressed genes.Sandra Danner, Christiane Kirchhoff and Richard Ivel

    The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions

    Get PDF
    We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37°C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (∼200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin

    Resistance to caspase-8 and -9 fragments in a malignant pleural mesothelioma cell line with acquired cisplatin-resistance

    Get PDF
    Apoptotic cysteine–aspartate proteases (caspases) are essential for the progression and execution of apoptosis, and detection of caspase fragmentation or activity is often used as markers of apoptosis. Cisplatin (cis-diamminedichloroplatinum (II)) is a chemotherapeutic drug that is clinically used for the treatment of solid tumours. We compared a cisplatin-resistant pleural malignant mesothelioma cell line (P31res1.2) with its parental cell line (P31) regarding the consequences of in vitro acquired cisplatin-resistance on basal and cisplatin-induced (equitoxic and equiapoptotic cisplatin concentrations) caspase-3, -8 and -9 fragmentation and proteolytic activity. Acquisition of cisplatin-resistance resulted in basal fragmentation of caspase-8 and -9 without a concomitant increase in proteolytic activity, and there was an increased basal caspase-3/7 activity. Similarly, cisplatin-resistant non-small-cell lung cancer cells, H1299res, had increased caspase-3 and -9 content compared with the parental H1299 cells. In P31 cells, cisplatin exposure resulted in caspase-9-mediated caspase-3/7 activation, but in P31res1.2 cells the cisplatin-induced caspase-3/7 activation occurred before caspase-8 or -9 activation. We therefore concluded that in vitro acquisition of cisplatin-resistance rendered P31res1.2 cells resistant to caspase-8 and caspase-9 fragments and that cisplatin-induced, initiator-caspase independent caspase-3/7 activation was necessary to overcome this resistance. Finally, the results demonstrated that detection of cleaved caspase fragments alone might be insufficient as a marker of caspase activity and ensuing apoptosis induction

    Next-Generation Sequencing of Apoptotic DNA Breakpoints Reveals Association with Actively Transcribed Genes and Gene Translocations

    Get PDF
    DNA fragmentation is a well-recognized hallmark of apoptosis. However, the precise DNA sequences cleaved during apoptosis triggered by distinct mechanisms remain unclear. We used next-generation sequencing of DNA fragments generated in Actinomycin D-treated human HL-60 leukemic cells to generate a high-throughput, global map of apoptotic DNA breakpoints. These data highlighted that DNA breaks are non-random and show a significant association with active genes and open chromatin regions. We noted that transcription factor binding sites were also enriched within a fraction of the apoptotic breakpoints. Interestingly, extensive apoptotic cleavage was noted within genes that are frequently translocated in human cancers. We speculate that the non-random fragmentation of DNA during apoptosis may contribute to gene translocations and the development of human cancers

    Role of apoptosis-inducing factor (AIF) in programmed nuclear death during conjugation in Tetrahymena thermophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Programmed nuclear death (PND), which is also referred to as nuclear apoptosis, is a remarkable process that occurs in ciliates during sexual reproduction (conjugation). In <it>Tetrahymena thermophila</it>, when the new macronucleus differentiates, the parental macronucleus is selectively eliminated from the cytoplasm of the progeny, concomitant with apoptotic nuclear events. However, the molecular mechanisms underlying these events are not well understood. The parental macronucleus is engulfed by a large autophagosome, which contains numerous mitochondria that have lost their membrane potential. In animals, mitochondrial depolarization precedes apoptotic cell death, which involves DNA fragmentation and subsequent nuclear degradation.</p> <p>Results</p> <p>We focused on the role of mitochondrial apoptosis-inducing factor (AIF) during PND in <it>Tetrahymena</it>. The disruption of <it>AIF </it>delays the normal progression of PND, specifically, nuclear condensation and kilobase-size DNA fragmentation. AIF is localized in <it>Tetrahymena </it>mitochondria and is released into the macronucleus prior to nuclear condensation. In addition, AIF associates and co-operates with the mitochondrial DNase to facilitate the degradation of kilobase-size DNA, which is followed by oligonucleosome-size DNA laddering.</p> <p>Conclusions</p> <p>Our results suggest that <it>Tetrahymena </it>AIF plays an important role in the degradation of DNA at an early stage of PND, which supports the notion that the mitochondrion-initiated apoptotic DNA degradation pathway is widely conserved among eukaryotes.</p
    corecore