961 research outputs found

    The 331 model with right-handed neutrinos

    Get PDF
    We explore some more consequences of the SU(3)LU(1)NSU(3)_L\otimes U(1)_N electroweak model with right-handed neutrinos. By introducing the ZZZ - Z' mixing angle ϕ\phi, the {\it exact} physical eigenstates for neutral gauge bosons are obtained. Because of the mixing, there is a modification to the Z1Z^1 coupling proportional to sinϕ\sin\phi. The data from the ZZ-decay allows us to fix the limit for ϕ\phi as 0.0021ϕ0.000132-0.0021 \leq \phi \leq 0.000132. >From the neutrino neutral current scatterings, we estimate a bound for the new neutral gauge boson Z2Z^2 mass in the range 300 GeV, and from symmetry-breaking hierarchy a bound for the new charged and neutral (non-Hermitian) gauge bosons Y±,XoY^{\pm}, X^o are obtained.Comment: Slight changes in section 5, Latex, 16 page

    Recent Developments in Precision Electroweak Physics

    Get PDF
    Developments in precision electroweak physics in the two years since the symposium are briefly summarized.Comment: Update on recent developments, prepared for the publication of the Proceedings of Alberto Sirlin Symposium, New York University, October 2000. 10 pages, 1 figur

    Radiatively Induced Neutrino Masses and Large Higgs-Neutrino Couplings in the Standard Model with Majorana Fields

    Get PDF
    The Higgs sector of the Standard Model with one right-handed neutrino per family is systematically analyzed. In a model with intergenerational independent mixings between families, we can account for very light neutrinos acquiring Majorana masses radiatively at the first electroweak loop level. We also find that in such a scenario the Higgs coupling to the light-heavy neutrinos and to the heavy-heavy ones may be remarkably enhanced with significant implications for the production of these heavy neutrinos at high energy colliders.Comment: Making the text of an old paper electronically availabl

    Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe

    Full text link
    The possibility of light sterile neutrinos allows for the resonant production of lepton number in the early universe through matter-affected neutrino mixing. For a given a mixing of the active and sterile neutrino states it has been found that the lepton number generation process is chaotic and strongly oscillatory. We undertake a new study of this process' sensitivity to initial conditions through the quantum rate equations. We confirm the chaoticity of the process in this solution, and moreover find that the resultant lepton number and the sign of the asymmetry produces a fractal in the parameter space of mass, mixing angle and initial baryon number. This has implications for future searches for sterile neutrinos, where arbitrary high sensitivity could not be determinate in forecasting the lepton number of the universe.Comment: 6 pages, 3 figure

    Exotic quark effects on the Higgs sector of the USSM at the LHC

    Full text link
    The Higgs sector of the U(1)-extended supersymmetric model is studied with great detail. We calculate the masses of the Higgs bosons at the one-loop level. We also calculate at the one-loop level the gluon-involving processes for the productions and decays of the scalar Higgs bosons of the model at the energy of the CERN Large Hadron Collider (LHC), where the radiative corrections due to the loops of top, bottom, and exotic quarks and their scalar partners are taken into account. We find that the exotic quark and exotic scalar quarks in the model may manifest themselves at the LHC, since the production of the heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by the loops of exotic quark and exotic scalar quarks, for a reasonable parameter set of the model.Comment: 36 pages, 13 figures, JP

    Possible Candidates for SUSY SO(10) Model with an Intermediate Scale

    Full text link
    We study the possibility of an intermediate scale existing in supersymmetric SO(10) grand unified theories: The intermediate scale is demanded to be around 10^{12} GeV so that neutrinos can obtain masses suitable for explaining the experimental data on the deficit of solar neutrino with Mikheev-Smirnov-Wolfenstein solution and the existence of hot dark matter. We show that any Pati-Salam type intermediate symmetries are excluded by requiring reasonable conditions and only SU(2)L×SU(2)R×SU(3)C×U(1)BLSU(2)_L\times SU(2)_R \times SU(3)_C\times U(1)_{B-L} is likely to be realized as an intermediate symmetry.Comment: LaTeX, 8 pages + 1 uuencoded eps figure (Error corrected

    Signals of extra gauge bosons and exotic leptons in SU(6)L_{L}\otimesU(1)Y_{Y}

    Get PDF
    We study some of the consequences of the SU(6)L_{L}\otimesU(1)Y_{Y} model of unification of electroweak interactions and families with a horizontal gauge group SU(2)H_{H}, paying special attention to processes with flavor changing neutral currents. We compute at tree level the decays K+π+μ+eK^{+}\longrightarrow \pi^{+}\mu^{+}e^{-}, KL0μ+eK_L^0\longrightarrow \mu^{+}e^{-} and μeνeˉνμ\mu^{-} \longrightarrow e^{-} \bar{\nu_e} \nu_\mu from which we obtain lower bounds for the mass of the horizontal gauge boson associated with FCNC. Finally we obtain limits on the mixing between ordinary and exotic charged leptons

    Infrared Quasi Fixed Points and Mass Predictions in the MSSM II: Large tan(beta) Scenario

    Full text link
    We consider the infrared quasi fixed point solutions of the renormalization group equations for the Yukawa couplings and soft supersymmetry breaking parameters in the MSSM in the \underline{large tanβ\tan\beta} regime. The existence of IR quasi fixed points together with the values of gauge couplings, third generation quarks, lepton and Z-boson masses allows one to predict masses of the Higgs bosons and SUSY particles as functions of the only free parameter, m1/2m_{1/2}, or the gluino mass. The lightest Higgs boson mass for MSUSY1M_{SUSY} \approx 1 TeV is found to be mh=128.20.47.1±5m_h=128.2-0.4-7.1 \pm 5 GeV for μ>0\mu>0 and mh=120.60.13.8±5m_h=120.6-0.1-3.8 \pm 5 GeV for μ<0\mu<0.Comment: 15 pages, LateX file with 4 eps figures, corrected numbers, new column in table, last versio

    Interference Effects, Time Reversal Violation and Search for New Physics in Hadronic Weak Decays

    Get PDF
    We propose some methods for studying hadronic sequential two-body decays involving more spinning particles. It relies on the analysis of T-odd and T-even asymmetries, which are related to interference terms. The latter asymmetries turn out to be as useful as the former ones in inferring time reversal violating observables; these in turn may be sensitive, under some particular conditions, to possible contributions beyond the standard model. Our main result is that one can extract such observables even after integrating the differential decay width over almost all of the available angles. Moreover we find that the correlations based exclusively on momenta are quite general, since they provide as much information as those involving one or more spins. We generalize some methods already proposed in the literature for particular decay channels, but we also pick out a new kind of time reversal violating observables. Our analysis could be applied, for example, to data of LHCb experiment.Comment: 35 page
    corecore