1,809 research outputs found

    Oscillating instanton solutions in curved space

    Full text link
    We investigate oscillating instanton solutions of a self-gravitating scalar field between degenerate vacua. We show that there exist O(4)-symmetric oscillating solutions in a de Sitter background. The geometry of this solution is finite and preserves the Z2Z_{2} symmetry. The nontrivial solution corresponding to tunneling is possible only if the effect of gravity is taken into account. We present numerical solutions of this instanton, including the phase diagram of solutions in terms of the parameters of the present work and the variation of energy densities. Our solutions can be interpreted as solutions describing an instanton-induced domain wall or braneworld-like object rather than a kink-induced domain wall or braneworld. The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism providing nucleation of the thick wall for topological inflation. We remark that Z2Z_{2} invariant solutions also exist in a flat and anti-de Sitter background, though the physical significance is not clear.Comment: 25 pages, 11 figues. Some typos corrected, references added, and Ch3. modified according to referee's comment

    Observation of a multiferroic critical end point

    Full text link
    The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a "metaelectric" critical end point has not yet been realized. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (\emph{H}) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn2_{2}O5_{5} in which the electric polarization (\emph{P}) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field \emph{H}c_{\rm c}. The simultaneous metaelectric and spin-flop transitions become sharper upon cooling, but remain a continuous crossover even down to 0.5 K. Near the \emph{P}=0 line realized at μ0\mu_{0}\emph{H}c_{\rm c}\approx18 T below 20 K, the dielectric constant (ε\varepsilon) increases significantly over wide field- and temperature (\emph{T})-ranges. Furthermore, a characteristic power-law behavior is found in the \emph{P}(\emph{H}) and ε\varepsilon(\emph{H}) curves at \emph{T}=0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn2_2O5_5 near zero temperature.Comment: 6 pages, 3 figure

    Global monopole solutions in Horava gravity

    Full text link
    In Horava's theory of gravity coupled to a global monopole source, we seek for static, spherically symmetric spacetime solutions for general values of λ\lambda. We obtain the explicit solutions with deficit solid angles, in the IR modified Horava gravity model, at the IR fixed point λ=1\lambda=1 and at the conformal point λ=1/3\lambda=1/3. For the other values of 1>λ>01>\lambda>0 we also find special solutions to the inhomogenous equation of the gravity model with detailed balance, and we discuss an possibility of astrophysical applications of the λ=1/2\lambda=1/2 solution that has a deficit angle for a finite range.Comment: 7 pages, added reference

    One-way multigrid method in electronic structure calculations

    Get PDF
    We propose a simple and efficient one-way multigrid method for self-consistent electronic structure calculations based on iterative diagonalization. Total energy calculations are performed on several different levels of grids starting from the coarsest grid, with wave functions transferred to each finer level. The only changes compared to a single grid calculation are interpolation and orthonormalization steps outside the original total energy calculation and required only for transferring between grids. This feature results in a minimal amount of code change, and enables us to employ a sophisticated interpolation method and noninteger ratio of grid spacings. Calculations employing a preconditioned conjugate gradient method are presented for two examples, a quantum dot and a charged molecular system. Use of three grid levels with grid spacings 2h, 1.5h, and h decreases the computer time by about a factor of 5 compared to single level calculations.Comment: 10 pages, 2 figures, to appear in Phys. Rev. B, Rapid Communication

    XMMU J100750.5+125818: A strong lensing cluster at z=1.082

    Full text link
    We report on the discovery of the X-ray luminous cluster XMMU J100750.5+125818 at redshift 1.082 based on 19 spectroscopic members, which displays several strong lensing features. SED modeling of the lensed arc features from multicolor imaging with the VLT and the LBT reveals likely redshifts ~2.7 for the most prominent of the lensed background galaxies. Mass estimates are derived for different radii from the velocity dispersion of the cluster members, M_200 ~ 1.8 10^{14} Msun, from the X-ray spectral parameters, M_500 ~ 1.0 10^{14} Msun, and the largest lensing arc, M_SL ~ 2.3 10^{13} Msun. The projected spatial distribution of cluster galaxies appears to be elongated, and the brightest galaxy lies off center with respect to the X-ray emission indicating a not yet relaxed structure. XMMU J100750.5+125818 offers excellent diagnostics of the inner mass distribution of a distant cluster with a combination of strong and weak lensing, optical and X-ray spectroscopy.Comment: A&A, accepted for publicatio

    Strong magnetoelastic effect on the magnetoelectric phenomena of TbMn2O5

    Get PDF
    Comparative studies of magnetoelectric susceptibility (??), magnetization (M), and magnetostriction (u) in TbMn2O5 reveal that the increment of M owing to the field-induced Tb3+ spin alignment produces a field-asymmetric line shape in the ??(H) curve, which is conspicuous in a low-temperature incommensurate phase but persistently subsists in the entire ferroelectric phase. Correlations among electric polarization, u, and M2 variation represent linear relationships, unambiguously showing the significant role of Tb magnetoelastic effects on the low-field magnetoelectric phenomena of TbMn2O5. An effective free energy capturing the observed experimental features is also suggested.open3

    Anyonic physical observables and spin phase transition

    Full text link
    The quantization of charged matter system coupled to Chern-Simons gauge fields is analyzed in a covariant gauge fixing, and gauge invariant physical anyon operators satisfying fractional statistics are constructed in a symmetric phase, based on Dirac's recipe performed on QED. This method provides us a definite way of identifying physical spectrums free from gauge ambiguity and constructing physical anyon operators under a covariant gauge fixing. We then analyze the statistical spin phase transition in a symmetry-broken phase and show that the Higgs mechanism transmutes an anyon satisfying fractional statistics into a canonical boson, a spin 0 Higgs boson or a topologically massive photon.Comment: 14 pages, added references, a few improvement

    Density-functional Study of Small Molecules within the Krieger-Li-Iafrate Approximation

    Get PDF
    We report density-functional studies of several small molecules (H2,N2,CO,H2OH_{2}, N_{2}, CO, H_{2}O, and CH4CH_{4}) within the Krieger-Li-Iafrate (KLI) approximation to the exact Kohn-Sham local exchange potential, using a three-dimensional real-space finite-difference pseudopotential method. It is found that exchange-only KLI leads to markedly improved eigenvalue spectra compared to those obtained within the standard local-density approximation (LDA), the generalized gradient approximation (GGA), and the Hartree-Fock (HF) method. For structural properties, exchange-only KLI results are close to the corresponding HF values. We find that the addition of LDA or GGA correlation energy functionals to the KLI exact exchange energy functional does not lead to systematic improvements.Comment: 16 pages including 1 fugure, to be published in Phys. Rev. A Nov. 1 '9

    Band gap opening by two-dimensional manifestation of Peierls instability in graphene

    Full text link
    Using first-principles calculations of graphene having high-symmetry distortion or defects, we investigate band gap opening by chiral symmetry breaking, or intervalley mixing, in graphene and show an intuitive picture of understanding the gap opening in terms of local bonding and antibonding hybridizations. We identify that the gap opening by chiral symmetry breaking in honeycomb lattices is an ideal two-dimensional (2D) extension of the Peierls metal-insulator transition in 1D linear lattices. We show that the spontaneous Kekule distortion, a 2D version of the Peierls distortion, takes place in biaxially strained graphene, leading to structural failure. We also show that the gap opening in graphene antidots and armchair nanoribbons, which has been attributed usually to quantum confinement effects, can be understood with the chiral symmetry breaking
    corecore