14 research outputs found

    Sondages dans la nappe alluviale de Mesvin

    Get PDF

    Investigation of ultrasonic backscatter using three-dimensional finite element simulations

    No full text
    Theoretical models are commonly used to describe ultrasonic backscattering in polycrystalline materials. However, although a full multiple scattering formalism has been derived, due to the difficulty in evaluation, currently only the single and double scattering effects have been evaluated. Three-dimensional finite element (3D FE) models have recently been demonstrated to be capable of predicting ultrasonic attenuation in polycrystalline materials and thereby show great potential in overcoming this limitation. In this paper, the application of 3D FE models is extended to the backscatter problem. First, longitudinal-to-longitudinal backscattering amplitudes from single grains are predicted, where the setup and configuration of the finite element (FE) model are verified with an isotropic spherical inclusion for which an exact solution is available. Subsequently, backscatter in terms of the root-mean-square noise levels in two different pulse-echo scenarios is investigated; the first is an idealised configuration with plane wave transmission and point reception; the second represents a more realistic finite-size transducer acting with the same apodization in both transmission and reception. Comparisons of FE predictions and approximate theoretical solutions within a range of validity show good agreement; however, the results demonstrate that 3D FE is useful where the simple Independent Scatterer models break down. As computing power increases, 3D FE is an increasingly viable tool to further the understanding of wave propagation in polycrystalline materials

    Feasibility and reliability of grain noise suppression in monitoring of highly scattering materials

    No full text
    A feasibility study on grain noise suppression using baseline subtraction is presented in this paper. Monitoring is usually done with permanently installed transducers but this is not always possible; here instead monitoring is conducted by carrying out repeat C-scans and the feasibility of grain noise suppression by subtracting A-scans extracted from the C-scans is investigated. The success of this technique depends on the ability to reproduce the same conditions for each scan, including a consistent stand-off, angle, and lateral position of the transducer relative to the testpiece. The significance of errors are illustrated and a 3D cross correlation is used which enables the same lateral position to be located within successive C-scans. The experimental results show that a noise reduction of around 15 dB is obtained after baseline subtraction, which will significantly improve the defect detection sensitivity. In practice however, successive C-scans may be conducted at different temperatures and with different transducers of similar specifications but a varying frequency response. Compensation techniques to reduce the impact of such variations are then presented and their effectiveness is verified experimentally. It is shown that it is feasible to obtain an overall improvement of around 10 dB in the signal to noise ratio via baseline subtraction, where a temperature difference of up to 10 ∘C and a peak frequency shift of as much as ±250 kHz from a baseline value of around 7 MHz can be tolerated. However, this improvement was obtained in laboratory conditions with no changes to the surface of the specimen due to oxidation or corrosion. It is shown that differences in temperature and transducer frequency response are more difficult to compensate for than changes in test geometry and position
    corecore