988 research outputs found

    Harmonic analysis and the Riemann-Roch theorem

    Full text link
    This paper is a continuation of papers: arXiv:0707.1766 [math.AG] and arXiv:0912.1577 [math.AG]. Using the two-dimensional Poisson formulas from these papers and two-dimensional adelic theory we obtain the Riemann-Roch formula on a projective smooth algebraic surface over a finite field.Comment: 7 pages; to appear in Doklady Mathematic

    Eight-quark interactions as a chiral thermometer

    Full text link
    A NJL Lagrangian extended to six and eight quark interactions is applied to study temperature effects (SU(3) flavor limit, massless case), and (realistic massive case). The transition temperature can be considerably reduced as compared to the standard approach, in accordance with recent lattice calculations. The mesonic spectra built on the spontaneously broken vacuum induced by the 't Hooft interaction strength, as opposed to the commonly considered case driven by the four-quark coupling, undergoes a rapid crossover to the unbroken phase, with a slope and at a temperature which is regulated by the strength of the OZI violating eight-quark interactions. This strength can be adjusted in consonance with the four-quark coupling and leaves the spectra unchanged, except for the sigma meson mass, which decreases. A first order transition behavior is also a possible solution within the present approach.Comment: 4 pages, 4 figures, prepared for the proceedings of Quark Matter 2008 - 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, February 4-10, Jaipur (India

    Gauge theory of disclinations on fluctuating elastic surfaces

    Full text link
    A variant of a gauge theory is formulated to describe disclinations on Riemannian surfaces that may change both the Gaussian (intrinsic) and mean (extrinsic) curvatures, which implies that both internal strains and a location of the surface in R^3 may vary. Besides, originally distributed disclinations are taken into account. For the flat surface, an extended variant of the Edelen-Kadic gauge theory is obtained. Within the linear scheme our model recovers the von Karman equations for membranes, with a disclination-induced source being generated by gauge fields. For a single disclination on an arbitrary elastic surface a covariant generalization of the von Karman equations is derived.Comment: 13 page

    Disclination vortices in elastic media

    Full text link
    The vortex-like solutions are studied in the framework of the gauge model of disclinations in elastic continuum. A complete set of model equations with disclination driven dislocations taken into account is considered. Within the linear approximation an exact solution for a low-angle wedge disclination is found to be independent from the coupling constants of the theory. As a result, no additional dimensional characteristics (like the core radius of the defect) are involved. The situation changes drastically for 2\pi vortices where two characteristic lengths, l_\phi and l_W, become of importance. The asymptotical behaviour of the solutions for both singular and nonsingular 2\pi vortices is studied. Forces between pairs of vortices are calculated.Comment: 13 pages, published versio

    Superluminality in the Fierz--Pauli massive gravity

    Full text link
    We study the propagation of helicity-1 gravitons in the Fierz--Pauli massive gravity in nearly Minkowski backgrounds. We show that, generically, there exist backgrounds consistent with field equations, in which the propagation is superluminal. The relevant distances are much longer than the ultraviolet cutoff length inherent in the Fierz--Pauli gravity, so superluminality occurs within the domain of validity of the effective low energy theory. There remains a possibility that one may get rid of this property by imposing fine tuning relations between the coefficients in the non-linear generalization of the Fierz--Pauli mass term, order by order in non-linearity; however, these relations are not protected by any obvious symmetry. Thus, among others, superluminality is a problematic property to worry about when attempting to construct infrared modifications of General Relativity.Comment: 11 pages, no figure

    Relaxation time spectrum of low-energy excitations in one- and two-dimensional materials with charge or spin density waves

    Full text link
    The long-time thermal relaxation of (TMTTF)2_2Br, Sr14_{14}Cu24_{24}O41_{41} and Sr2_2Ca12_{12}Cu24_{24}O41_{41} single crystals at temperatures below 1 K and magnetic field up to 10 T is investigated. The data allow us to determine the relaxation time spectrum of the low energy excitations caused by the charge-density wave (CDW) or spin-density wave (SDW). The relaxation time is mainly determined by a thermal activated process for all investigated materials. The maximum relaxation time increases with increasing magnetic field. The distribution of barrier heights corresponds to one or two Gaussian functions. The doping of Sr14x_{14-x}Cax_{x}Cu24_{24}O41_{41} with Ca leads to a drastic shift of the relaxation time spectrum to longer time. The maximum relaxation time changes from 50 s (x = 0) to 3000 s (x = 12) at 0.1 K and 10 T. The observed thermal relaxation at x=12 clearly indicates the formation of the SDW ground state at low temperatures

    Transition to Chaotic Phase Synchronization through Random Phase Jumps

    Full text link
    Phase synchronization is shown to occur between opposite cells of a ring consisting of chaotic Lorenz oscillators coupled unidirectionally through driving. As the coupling strength is diminished, full phase synchronization cannot be achieved due to random generation of phase jumps. The brownian dynamics underlying this process is studied in terms of a stochastic diffusion model of a particle in a one-dimensional medium.Comment: Accepted for publication in IJBC, 10 pages, 5 jpg figure

    Dirac fermions on a disclinated flexible surface

    Full text link
    A self-consisting gauge-theory approach to describe Dirac fermions on flexible surfaces with a disclination is formulated. The elastic surfaces are considered as embeddings into R^3 and a disclination is incorporated through a topologically nontrivial gauge field of the local SO(3) group which generates the metric with conical singularity. A smoothing of the conical singularity on flexible surfaces is naturally accounted for by regarding the upper half of two-sheet hyperboloid as an elasticity-induced embedding. The availability of the zero-mode solution to the Dirac equation is analyzed.Comment: 6 page

    Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    Full text link
    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by "NPO CKTI" JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air. © Published under licence by IOP Publishing Ltd.This work was financially supported by the Russian Science Foundation (project no. 14-19-00524)

    Prospects for Establishment of Technological Complexes in Machine Building Industry on The Basis of Electromechatronic Propulsion Systems

    Get PDF
    The authors consider prospects for technological complex establishment in machine building industry on the basis of electromechatronic propulsion systems for production of innovative products with different novelty levels: world, state, brunch, region, etc
    corecore