3 research outputs found
A deep XMM-Newton observation of the ultraluminous X-ray source Holmberg II X-1: the case against a 1000 M solar black hole
We present results from a 112-ks long look by XMM-Newton at the ultraluminous X-ray source (ULX) Holmberg II X-1 (Ho II X-1), long thought to be the one of best candidates for the missing class of intermediate-mass black holes (IMBHs). Our data comprises the first high-quality XMM-Newton/RGS (reflection grating spectrometer) spectrum of an ULX, and an XMM-Newton/EPIC (European Photo Imaging Camera) spectrum with unprecedented signal-to-noise ratio. A detailed timing analysis shows that any variability on time-scales of minutes to hours is very weak (less than a few per cent fractional rms), though larger amplitude variations on much shorter time-scales could be hidden by photon counting statistics. This result suggests that if Ho II X-1 harbours an IMBH, then we are observing this source in a highly unusual and atypical state when compared with the known variability behaviour of other accreting systems of large mass. Moreover, unlike galactic X-ray binaries, our spectral analysis indicates the possible presence of an optically thick low-temperature corona. Taken together our timing and spectral analysis suggests that the compact companion is most likely a high-luminosity analogue of black hole binary systems similar to GRS 1915+105, the galactic microquasar, harbouring a compact object of mass no greater than 100 M⊙
Evidence for Gravitational Infall of Matter onto the Supermasive Black Hole in the Quasar PG
We report the detection of redshifted iron Kα absorption lines in the Chandra LETG spectrum of the narrow-line quasar PG 1211+143. The absorption lines are observed at 4.22 and 4.93 keV in the quasar spectrum, corresponding to 4.56 and 5.33 keV in the rest frame of PG 1211+143. From Monte Carlo simulations, the chance probability of both lines being false detections is low at 1.36 × 10-4. Highly redshifted ionized iron Kα (Fe XXV or Fe XXVI) is the most plausible identification for the lines at their observed energies. If identified with H-like iron Kα at 6.97 keV, then the relativistic velocity shifts required are 0.40c and 0.26c. The extreme velocities can be explained by pure gravitational redshift if the matter exists in a stable orbit within 6 gravitational radii of the black hole. This would require a Kerr metric for the black hole. Alternatively, the absorption may be the result of matter infalling directly onto the black hole, with a maximum observed velocity of 0.38c at 6Rg in the Schwarzschild metric. This matter may originate in a failed outflow or jet, which does not escape the gravitational potential of the black hole
Evidence for Gravitational Infall of Matter onto the Supermasive Black Hole in the Quasar PG
We report the detection of redshifted iron Kα absorption lines in the Chandra LETG spectrum of the narrow-line quasar PG 1211+143. The absorption lines are observed at 4.22 and 4.93 keV in the quasar spectrum, corresponding to 4.56 and 5.33 keV in the rest frame of PG 1211+143. From Monte Carlo simulations, the chance probability of both lines being false detections is low at 1.36 × 10-4. Highly redshifted ionized iron Kα (Fe XXV or Fe XXVI) is the most plausible identification for the lines at their observed energies. If identified with H-like iron Kα at 6.97 keV, then the relativistic velocity shifts required are 0.40c and 0.26c. The extreme velocities can be explained by pure gravitational redshift if the matter exists in a stable orbit within 6 gravitational radii of the black hole. This would require a Kerr metric for the black hole. Alternatively, the absorption may be the result of matter infalling directly onto the black hole, with a maximum observed velocity of 0.38c at 6Rg in the Schwarzschild metric. This matter may originate in a failed outflow or jet, which does not escape the gravitational potential of the black hole