7,096 research outputs found

    Entanglement Sharing and Decoherence in the Spin-Bath

    Get PDF
    The monogamous nature of entanglement has been illustrated by the derivation of entanglement sharing inequalities - bounds on the amount of entanglement that can be shared amongst the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomena in the spin-bath environment, constructing an entanglement sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.Comment: 5 pages, 1 figure v2: 6 pages 2 figures, additional example and reference

    Minijet corrections to Higgs production

    Full text link
    We study higher order corrections to Higgs production with an associated jet at SSC energies, using the resummation of the leading logarithmic contributions to multiple gluon emissions due to Lipatov and collaborators. We find a considerable enhancement of Higgs production at large transverse momenta.Comment: 15 page

    Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study

    Full text link
    Previous theoretical, along with early simulation and experimental, studies have indicated that particles with a short-ranged attraction exhibit a range of new dynamical arrest phenomena. These include very pronounced reentrance in the dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of `attractive' and `repulsive' glasses. Here we carry out extensive molecular dynamics calculations on dense systems interacting via a square-well potential. This is one of the simplest systems with the required properties, and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We confirm the theoretical predictions for re-entrance, logarithmic singularity, and give the first direct evidence of the coexistence, independent of theory, of the two coexisting glasses. We now regard the previous predictions of these phenomena as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.

    Infrared Colors at the Stellar/Substellar Boundary

    Get PDF
    We present new infrared photometry for 61 halo and disk stars around the stellar/substellar boundary. These data are combined with available optical photometry and astrometric data to produce color--color and absolute magnitude--color diagrams. The disk and halo sequences are compared to the predictions of the latest model atmospheres and structural models. We find good agreement between observation and theory except for known problems in the V and H passbands probably due to incomplete molecular data for TiO, metal hydrides and H2_2O. The metal--poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The known extreme M subdwarfs have metallicities about one--hundredth solar, and the coolest subdwarfs have Teff3000_{eff}\sim 3000 K with masses \sim 0.09M/M_{\odot}. The grainless models are not able to reproduce the flux distributions of disk objects with Teff<_{eff} < 2500 K, however a preliminary version of the NextGen--Dusty models which includes homogeneous formation and extinction by dust grains {\it is} able to match the colors of these very cool objects. The least luminous objects in this sample are GD165B, three DENIS objects --- DBD0205, DBD1058 and DBD1228 --- and Kelu-1. These have Teff_{eff}\sim 2000 K and are at or below the stellar limit with masses \leq0.075M/M_{\odot}. Photometry alone cannot constrain these parameters further as the age is unknown, but published lithium detections for two of these objects (Kelu-1 and DBD1228) imply that they are young (aged about 1 Gyr) and substellar (mass \leq0.06M/M_{\odot}).Comment: ApJ, in press. 18 pages. Also available at ftp://ftp.jach.hawaii.edu/pub/ukirt/skl/dM_preprint

    Gaussian density fluctuations and Mode Coupling Theory for supercooled liquids

    Full text link
    The equations of motion for the density modes of a fluid, derived from Newton's equations, are written as a linear generalized Langevin equation. The constraint imposed by the fluctuation-dissipation theorem is used to derive an exact form for the memory function. The resulting equations, solved under the assumption that the noise, and consequently density fluctuations, of the liquid are gaussian distributed, are equivalent to the random-phase-approximation for the static structure factor and to the well known ideal mode coupling theory (MCT) equations for the dynamics. This finding suggests that MCT is the canonical mean-field theory of the fluid dynamics.Comment: 4 pages, REVTE

    Higgs production with large transverse momentum in hadronic collisions at next-to-leading order

    Get PDF
    Inclusive associated production of a light Higgs boson (m_H < m_t) with one jet in pp collisions is studied in next-to-leading order QCD. Transverse momentum (p_T < 30 GeV) and rapidity distributions of the Higgs boson are calculated for the LHC in the large top-quark mass limit. It is pointed out that, as much as in the case of inclusive Higgs production, the K-factor of this process is large (~1.6) and depends weakly on the kinematics in a wide range of transverse momentum and rapidity intervals. Our result confirms previous suggestions that the production channel p+p -> H+jet -> gamma+gamma+jet gives a measurable signal for Higgs production at the LHC in the mass range 100-140 GeV, crucial also for the ultimate test of the Minimal Supersymmetric Standard Model.Comment: 7 pages, 3 eps figures include

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    Excitons in type-II quantum dots: Finite offsets

    Full text link
    Quantum size effects for an exciton attached to a spherical quantum dot are calculated by a variational approach. The band line-ups are assumed to be type-II with finite offsets. The dependence of the exciton binding energy upon the dot radius and the offsets is studied for different sets of electron and hole effective masses

    On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM

    Full text link
    We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.Comment: 18 pages, 4 figure

    The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO

    Full text link
    The fully differential computation of the hadronic production cross section of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several differential distributions with their corresponding scale uncertainties are presented for the 8 TeV LHC. This is the first application of the method of non-linear mappings for NNLO differential calculations at hadron colliders.Comment: 27 pages, 13 figures, 1 lego plo
    corecore