26 research outputs found

    Nonlinear backreaction in a quantum mechanical SQUID

    Get PDF
    In this paper we discuss the coupling between a quantum mechanical superconducting quantum interference device (SQUID) and an applied static magnetic field. We demonstrate that the backreaction of a SQUID on the applied field can interfere with the ability to bias the SQUID at values of the static (DC) magnetic flux at, or near to, transitions in the quantum mechanical SQUID.Comment: 9 pages, to be published in Phys. Rev.

    Sisyphus effects in a microwave-excited flux-qubit resonator system

    Get PDF
    Sisyphus amplification, familiar from quantum optics, has recently been reported as a mechanism to explain the enhanced quality factor of a classical resonant (tank) circuit coupled to a superconducting flux qubit. Here we present data from a coupled system, comprising a quantum mechanical rf SQUID (flux qubit) reactively monitored by an ultrahigh quality factor noise driven rf resonator and excited by microwaves. The system exhibits enhancement of the tank-circuit resonance, bringing it significantly closer (within 1%) to the lasing limit, than previously reported results. 2010 The American Physical Society

    Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System

    Get PDF
    In this paper we study numerical solutions to the quasi-classical equations of motion for a SQUID ring-radio frequency (rf) resonator system in the regime where the ring is highly hysteretic. In line with experiment, we show that for a suitable choice of of ring circuit parameters the solutions to these equations of motion comprise sets of levels in the rf voltage-current dynamics of the coupled system. We further demonstrate that transitions, both up and down, between these levels can be controlled by voltage pulses applied to the system, thus opening up the possibility of high order (e.g. 10 state), multi-level logic and memory.Comment: 8 pages, 9 figure

    Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    Get PDF
    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.Comment: 7 pages, 6 figure

    Superconducting Analogues of Quantum Optical Phenomena: Macroscopic Quantum Superpositions and Squeezing in a SQUID Ring

    Get PDF
    In this paper we explore the quantum behaviour of a SQUID ring which has a significant Josephson coupling energy. We show that that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilised to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring.Comment: 9 pages, 10 figures, To be submitted to Phys. Rev. A. (changes for referee's and editior's comments - replaced to try to get PDF working

    Characterising a solid state qubit via environmental noise

    Get PDF
    We propose a method for characterising the energy level structure of a solid-state qubit by monitoring the noise level in its environment. We consider a model persistent-current qubit in a lossy resevoir and demonstrate that the noise in a classical bias field is a sensitive function of the applied field.Comment: 3 Figure

    Energy Down Conversion between Classical Electromagnetic Fields via a Quantum Mechanical SQUID Ring

    Get PDF
    We consider the interaction of a quantum mechanical SQUID ring with a classical resonator (a parallel LCLC tank circuit). In our model we assume that the evolution of the ring maintains its quantum mechanical nature, even though the circuit to which it is coupled is treated classically. We show that when the SQUID ring is driven by a classical monochromatic microwave source, energy can be transferred between this input and the tank circuit, even when the frequency ratio between them is very large. Essentially, these calculations deal with the coupling between a single macroscopic quantum object (the SQUID ring) and a classical circuit measurement device where due account is taken of the non-perturbative behaviour of the ring and the concomitant non-linear interaction of the ring with this device.Comment: 7 pages, 6 figure

    Signal specific electric potential sensors for operation in noisy environments

    Get PDF
    Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications
    corecore