55 research outputs found
Ultracold quantum gases in triangular optical lattices
Over the last years the exciting developments in the field of ultracold atoms
confined in optical lattices have led to numerous theoretical proposals devoted
to the quantum simulation of problems e.g. known from condensed matter physics.
Many of those ideas demand for experimental environments with non-cubic lattice
geometries. In this paper we report on the implementation of a versatile
three-beam lattice allowing for the generation of triangular as well as
hexagonal optical lattices. As an important step the superfluid-Mott insulator
(SF-MI) quantum phase transition has been observed and investigated in detail
in this lattice geometry for the first time. In addition to this we study the
physics of spinor Bose-Einstein condensates (BEC) in the presence of the
triangular optical lattice potential, especially spin changing dynamics across
the SF-MI transition. Our results suggest that below the SF-MI phase
transition, a well-established mean-field model describes the observed data
when renormalizing the spin-dependent interaction. Interestingly this opens new
perspectives for a lattice driven tuning of a spin dynamics resonance occurring
through the interplay of quadratic Zeeman effect and spin-dependent
interaction. We finally discuss further lattice configurations which can be
realized with our setup.Comment: 19 pages, 7 figure
Quantum simulation of frustrated magnetism in triangular optical lattices
Magnetism plays a key role in modern technology as essential building block
of many devices used in daily life. Rich future prospects connected to
spintronics, next generation storage devices or superconductivity make it a
highly dynamical field of research. Despite those ongoing efforts, the
many-body dynamics of complex magnetism is far from being well understood on a
fundamental level. Especially the study of geometrically frustrated
configurations is challenging both theoretically and experimentally. Here we
present the first realization of a large scale quantum simulator for magnetism
including frustration. We use the motional degrees of freedom of atoms to
comprehensively simulate a magnetic system in a triangular lattice. Via a
specific modulation of the optical lattice, we can tune the couplings in
different directions independently, even from ferromagnetic to
antiferromagnetic. A major advantage of our approach is that standard
Bose-Einstein-condensate temperatures are sufficient to observe magnetic
phenomena like N\'eel order and spin frustration. We are able to study a very
rich phase diagram and even to observe spontaneous symmetry breaking caused by
frustration. In addition, the quantum states realized in our spin simulator are
yet unobserved superfluid phases with non-trivial long-range order and
staggered circulating plaquette currents, which break time reversal symmetry.
These findings open the route towards highly debated phases like spin-liquids
and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure
Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
Orbital physics plays a significant role for a vast number of important
phenomena in complex condensed matter systems such as high-T
superconductivity and unconventional magnetism. In contrast, phenomena in
superfluids -- especially in ultracold quantum gases -- are commonly well
described by the lowest orbital and a real order parameter. Here, we report on
the observation of a novel multi-orbital superfluid phase with a {\it complex}
order parameter in binary spin mixtures. In this unconventional superfluid, the
local phase angle of the complex order parameter is continuously twisted
between neighboring lattice sites. The nature of this twisted superfluid
quantum phase is an interaction-induced admixture of the p-orbital favored by
the graphene-like band structure of the hexagonal optical lattice used in the
experiment. We observe a second-order quantum phase transition between the
normal superfluid (NSF) and the twisted superfluid phase (TSF) which is
accompanied by a symmetry breaking in momentum space. The experimental results
are consistent with calculated phase diagrams and reveal fundamentally new
aspects of orbital superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex phenomena of
orbital physics.Comment: 5 pages, 4 figure
Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
Dirac points lie at the heart of many fascinating phenomena in condensed
matter physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators [1, 2]. At a Dirac point, two
energy bands intersect linearly and the particles behave as relativistic Dirac
fermions. In solids, the rigid structure of the material sets the mass and
velocity of the particles, as well as their interactions. A different, highly
flexible approach is to create model systems using fermionic atoms trapped in
the periodic potential of interfering laser beams, a method which so far has
only been applied to explore simple lattice structures [3, 4]. Here we report
on the creation of Dirac points with adjustable properties in a tunable
honeycomb optical lattice. Using momentum-resolved interband transitions, we
observe a minimum band gap inside the Brillouin zone at the position of the
Dirac points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inversion symmetry.
Moreover, changing the lattice anisotropy allows us to move the position of the
Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a
critical limit, the two Dirac points merge and annihilate each other - a
situation which has recently attracted considerable theoretical interest [5-9],
but seems extremely challenging to observe in solids [10]. We map out this
topological transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to model
materials where the topology of the band structure plays a crucial role, but
also provide an avenue to explore many-body phases resulting from the interplay
of complex lattice geometries with interactions [11, 12]
Topological orbital ladders
We unveil a topological phase of interacting fermions on a two-leg ladder of
unequal parity orbitals, derived from the experimentally realized double-well
lattices by dimension reduction. topological invariant originates simply
from the staggered phases of -orbital quantum tunneling, requiring none of
the previously known mechanisms such as spin-orbit coupling or artificial gauge
field. Another unique feature is that upon crossing over to two dimensions with
coupled ladders, the edge modes from each ladder form a parity-protected flat
band at zero energy, opening the route to strongly correlated states controlled
by interactions. Experimental signatures are found in density correlations and
phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on
Majorana numbe
Modified spin-wave theory with ordering vector optimization I: frustrated bosons on the spatially anisotropic triangular lattice
We investigate a system of frustrated hardcore bosons, modeled by an XY
antiferromagnet on the spatially anisotropic triangular lattice, using
Takahashi's modified spin-wave (MSW) theory. In particular we implement
ordering vector optimization on the ordered reference state of MSW theory,
which leads to significant improvement of the theory and accounts for quantum
corrections to the classically ordered state. The MSW results at zero
temperature compare favorably to exact diagonalization (ED) and projected
entangled-pair state (PEPS) calculations. The resulting zero-temperature phase
diagram includes a 1D quasi-ordered phase, a 2D Neel ordered phase, and a 2D
spiraling ordered phase. We have strong indications that the various ordered or
quasi-ordered phases are separated by spin-liquid phases with short-range
correlations, in analogy to what has been predicted for the Heisenberg model on
the same lattice. Within MSW theory we also explore the finite-temperature
phase diagram. We find that the zero-temperature long-range-ordered phases turn
into quasi-ordered phases (up to a Berezinskii-Kosterlitz-Thouless
temperature), while zero-temperature quasi-ordered phases become short-range
correlated at finite temperature. These results show that modified spin-wave
theory is very well suited for describing ordered and quasi-ordered phases of
frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at
zero and finite temperatures. While MSW theory, just as other theoretical
methods, cannot describe spin-liquid phases, its breakdown provides a fast
method for singling out Hamiltonians which may feature these intriguing quantum
phases. We thus suggest a tool for guiding our search for interesting systems
whose properties are necessarily studied with a physical quantum simulator.Comment: 40 pages, 16 figure
Schrodinger cat states prepared by Bloch oscillation in a spin-dependent optical lattice
We propose to use Bloch oscillation of ultra-cold atoms in a spin-dependent
optical lattice to prepare schrodinger cat states. Depending on its internal
state, an atom feels different periodic potentials and thus has different
energy band structures for its center-of-mass motion. Consequently, under the
same gravity force, the wave packets associated with different internal states
perform Bloch oscillation of different amplitudes in space and in particular
they can be macroscopically displaced with respect to each other. In this way,
a cat state can be prepared.Comment: 4 pages, 3 figures; slightly modifie
Topological phase transitions in the non-Abelian honeycomb lattice
Ultracold Fermi gases trapped in honeycomb optical lattices provide an
intriguing scenario, where relativistic quantum electrodynamics can be tested.
Here, we generalize this system to non-Abelian quantum electrodynamics, where
massless Dirac fermions interact with effective non-Abelian gauge fields. We
show how in this setup a variety of topological phase transitions occur, which
arise due to massless fermion pair production events, as well as pair
annihilation events of two kinds: spontaneous and strongly-interacting induced.
Moreover, such phase transitions can be controlled and characterized in optical
lattice experiments.Comment: RevTex4 file, color figure
Cooling in strongly correlated optical lattices: prospects and challenges
Optical lattices have emerged as ideal simulators for Hubbard models of
strongly correlated materials, such as the high-temperature superconducting
cuprates. In optical lattice experiments, microscopic parameters such as the
interaction strength between particles are well known and easily tunable.
Unfortunately, this benefit of using optical lattices to study Hubbard models
come with one clear disadvantage: the energy scales in atomic systems are
typically nanoKelvin compared with Kelvin in solids, with a correspondingly
miniscule temperature scale required to observe exotic phases such as d-wave
superconductivity. The ultra-low temperatures necessary to reach the regime in
which optical lattice simulation can have an impact-the domain in which our
theoretical understanding fails-have been a barrier to progress in this field.
To move forward, a concerted effort to develop new techniques for cooling and,
by extension, techniques to measure even lower temperatures. This article will
be devoted to discussing the concepts of cooling and thermometry, fundamental
sources of heat in optical lattice experiments, and a review of proposed and
implemented thermometry and cooling techniques.Comment: in review with Reports on Progress in Physic
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
- …