8,933 research outputs found
Spontaneous creation of discrete breathers in Josephson arrays
We report on the experimental generation of discrete breather states
(intrinsic localized modes) in frustrated Josephson arrays. Our experiments
indicate the formation of discrete breathers during the transition from the
static to the dynamic (whirling) system state, induced by a uniform external
current. Moreover, spatially extended resonant states, driven by a uniform
current, are observed to evolve into localized breather states. Experiments
were performed on single Josephson plaquettes as well as open-ended Josephson
ladders with 10 and 20 cells. We interpret the breather formation as the result
of the penetration of vortices into the system.Comment: 5 pages, 5 figure
Soliton Staircases and Standing Strain Waves in Confined Colloidal Crystals
We show by computer simulation of a two-dimensional crystal confined by
corrugated walls that confinement can be used to impose a controllable
mesoscopic superstructure of predominantly mechanical elastic character. Due to
an interplay of the particle density of the system and the width D of the
confining channel, "soliton staircases" can be created along both parallel
confining boundaries, that give rise to standing strain waves in the entire
crystal. The periodicity of these waves is of the same order as D. This
mechanism should be useful for structure formation in the self-assembly of
various nanoscopic materials.Comment: 22 pages, 5 figure
Langevin Dynamics simulations of a 2-dimensional colloidal crystal under confinement and shear
Langevin Dynamics simulations are used to study the effect of shear on a
two-dimensional colloidal crystal confined by structured parallel walls. When
walls are sheared very slowly, only two or three crystalline layers next to the
walls move along with them, while the inner layers of the crystal are only
slightly tilted. At higher shear velocities, this inner part of the crystal
breaks into several pieces with different orientations. The velocity profile
across the slit is reminiscent of shear-banding in flowing soft materials,
where liquid and solid regions coexist; the difference, however, is that in the
latter case the solid regions are glassy while here they are crystalline. At
even higher shear velocities, the effect of the shearing becomes smaller again.
Also the effective temperature near the walls (deduced from the velocity
distributions of the particles) decreases again when the wall velocity gets
very large. When the walls are placed closer together, thereby introducing a
misfit, a structure containing a soliton staircase arises in simulations
without shear. Introducing shear increases the disorder in these systems until
no solitons are visible any more. Instead, similar structures like in the case
without misfit result. At high shear rates, configurations where the
incommensurability of the crystalline structure is compensated by the creation
of holes become relevant
Parametric ordering of complex systems
Cellular automata (CA) dynamics are ordered in terms of two global
parameters, computable {\sl a priori} from the description of rules. While one
of them (activity) has been used before, the second one is new; it estimates
the average sensitivity of rules to small configurational changes. For two
well-known families of rules, the Wolfram complexity Classes cluster
satisfactorily. The observed simultaneous occurrence of sharp and smooth
transitions from ordered to disordered dynamics in CA can be explained with the
two-parameter diagram
Ab Initio study of neutron drops with chiral Hamiltonians
We report ab initio calculations for neutron drops in a 10 MeV external
harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon
interactions. We present total binding energies, internal energies, radii and
odd-even energy differences for neutron numbers N = 2 - 18 using the no-core
shell model with and without importance truncation. Furthermore, we present
total binding energies for N = 8, 16, 20, 28, 40, 50 obtained in a
coupled-cluster approach. Comparisons with Green's Function Monte Carlo
results, where available, using Argonne v8' with three-nucleon interactions
reveal important dependences on the chosen Hamiltonian.Comment: 7 pages, 5 figure
Quantum interface unbinding transitions
We consider interfacial phenomena accompanying bulk quantum phase transitions
in presence of surface fields. On general grounds we argue that the surface
contribution to the system free energy involves a line of singularities
characteristic of an interfacial phase transition, occurring below the bulk
transition temperature T_c down to T=0. This implies the occurrence of an
interfacial quantum critical regime extending into finite temperatures and
located within the portion of the phase diagram where the bulk is ordered. Even
in situations, where the bulk order sets in discontinuously at T=0, the
system's behavior at the boundary may be controlled by a divergent length scale
if the tricritical temperature is sufficiently low. Relying on an effective
interfacial model we compute the surface phase diagram in bulk spatial
dimensionality and extract the values of the exponents describing the
interfacial singularities in
Magnetic field induced control of breather dynamics in a single plaquette of Josephson junctions
We present a theoretical study of inhomogeneous dynamic (resistive) states in
a single plaquette consisting of three Josephson junctions. Resonant
interactions of such a breather state with electromagnetic oscillations
manifest themselves by resonant current steps and voltage jumps in the
current-voltage characteristics. An externally applied magnetic field leads to
a variation of the relative shift between the Josephson current oscillations of
two resistive junctions. By making use of the rotation wave approximation
analysis and direct numerical simulations we show that this effect allows to
effectively control the breather instabilities, e. g. to increase (decrease)
the height of the resonant steps and to suppress the voltage jumps in the
current-voltage characteristics.Comment: 4 pages, 3 figure
- …