2,270 research outputs found

    Inelastic quantum transport in superlattices: success and failure of the Boltzmann equation

    Get PDF
    Electrical transport in semiconductor superlattices is studied within a fully self-consistent quantum transport model based on nonequilibrium Green functions, including phonon and impurity scattering. We compute both the drift velocity-field relation and the momentum distribution function covering the whole field range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport situation in the presence of inelastic scattering.Comment: final version with minor changes, to appear in Physical Review Letters, sceduled tentatively for July, 26 (1999

    Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport

    Full text link
    A non-equilibrium Green's function method is applied to model high-field quantum transport and electron-phonon resonances in semiconductor superlattices. The field-dependent density of states for elastic (impurity) scattering is found non-perturbatively in an approach which can be applied to both high and low electric fields. I-V curves, and specifically electron-phonon resonances, are calculated by treating the inelastic (LO phonon) scattering perturbatively. Calculations show how strong impurity scattering suppresses the electron-phonon resonance peaks in I-V curves, and their detailed sensitivity to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl

    Dual Attention GANs for Semantic Image Synthesis

    Full text link
    In this paper, we focus on the semantic image synthesis task that aims at transferring semantic label maps to photo-realistic images. Existing methods lack effective semantic constraints to preserve the semantic information and ignore the structural correlations in both spatial and channel dimensions, leading to unsatisfactory blurry and artifact-prone results. To address these limitations, we propose a novel Dual Attention GAN (DAGAN) to synthesize photo-realistic and semantically-consistent images with fine details from the input layouts without imposing extra training overhead or modifying the network architectures of existing methods. We also propose two novel modules, i.e., position-wise Spatial Attention Module (SAM) and scale-wise Channel Attention Module (CAM), to capture semantic structure attention in spatial and channel dimensions, respectively. Specifically, SAM selectively correlates the pixels at each position by a spatial attention map, leading to pixels with the same semantic label being related to each other regardless of their spatial distances. Meanwhile, CAM selectively emphasizes the scale-wise features at each channel by a channel attention map, which integrates associated features among all channel maps regardless of their scales. We finally sum the outputs of SAM and CAM to further improve feature representation. Extensive experiments on four challenging datasets show that DAGAN achieves remarkably better results than state-of-the-art methods, while using fewer model parameters. The source code and trained models are available at https://github.com/Ha0Tang/DAGAN.Comment: Accepted to ACM MM 2020, camera ready (9 pages) + supplementary (10 pages

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    Complete nucleotide sequences and genome organization of a cherry isolate of cherry leaf roll virus

    Get PDF
    The complete nucleotide sequence of cherry leaf roll virus (CLRV, genus Nepovirus) from a naturally infected cherry tree (Prunus avium cv. Bing) in North America was determined. RNA1 and RNA2 consist of 7,893 and 6,492 nucleotides, respectively, plus a poly-(A) tail. Each RNA encodes a single potential open reading frame. The first 657 nucleotides of RNA1 and RNA2 are 99% identical and include the 5′-UTR and the first 214 deduced amino acids of the polyproteins following the first of two in-frame start codons. Phylogenetic analysis reveals close relationships between CLRV and members of subgroup C of the genus Nepovirus

    Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses

    Get PDF
    In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 μg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 μg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosage

    Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature

    Full text link
    We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
    corecore