86 research outputs found

    SRI-A Method for Sustainable Intensification of Rice Production with Enhanced Water Productivity

    Get PDF
    Climate change induced higher temperatures will increase crops’ water requirements. Every 10°C increase in mean temperature, results in 7% decline in the yield of rice crop. Hence, there is a need to develop water saving technologies in rice which consumes more than 50% of the total irrigation water in agriculture. System of Rice Intensification (SRI) is one such water saving rice production technology. Experiments were conducted at different locations in India including research farm of Directorate of Rice Research (DRR), Hyderabad, during 2005-10 to assess the potential of SRI in comparison to normal transplanting/Standard Planting (NTP/SP) under flooded condition. SRI recorded higher grain yield (6 to 65% over NTP) at majority of locations. Long term studies clearly indicated that grain yield was significantly higher (12-23% and 4-35% over NTP in Kharif and Rabi seasons, respectively) in SRI (with organic+inorganic fertilizers) while the SRI (with100% organic manures), recorded higher yield (4-34%) over NTP only in the Rabi seasons. Even though, SRI resulted in higher productivity, the available nutrient status in soil was marginally higher (10, 42 and 13% over NTP for N, P and K, respectively) at the end of four seasons. There was a reduction in the incidence of pests in SRI and the relative abundance of plant parasitic nematodes was low in SRI as compared to the NTP. About 31% and 37% saving in irrigation water was observed during Kharif and Rabi seasons, respectively in both methods of SRI cultivation over NTP. SRI performed well and consistently reduced requirement of inputs such as seed and water in different soil conditions. SRI method, using less water for rice production can help in overcoming water shortage in future and it can also make water available for growing other crops thus promoting crop diversificatio

    Osjetljiva spektrofotometrijska metoda za određivanje sulfonamida u farmaceutskim pripravcima

    Get PDF
    A new, simple and sensitive spectrophotometric method for the determination of some sulfonamide drugs has been developed. The method is based on the diazotisation of sulfacetamide, sulfadiazine, sulfaguanidine, sulfamerazine, sulfamethazine, sulfamethoxazole and coupling with 8-hydroxyquinoline in alkaline media to yield red coloured products, with absorption maximum at 500 nm. The Beer’s law is obeyed from 0.17.0 µg mL1. The limits of quantification and limits of detection were 0.110.18 and 0.030.5 µg mL1, respectively. Intraday precision (RSD 0.10.5%) and accuracy (recovery 97.3100.8) of the developed method were evaluated. No interference was observed from common adjuvants. The method has been successfully applied to the assay of sulpha drug in the pharmaceutical formulations.U radu je opisana nova, jednostavna i osjetljiva spektrofotometrijska metoda za određivanje sulfonamida. Metoda se temelji na prevođenju sulfacetamida, sulfadiazina, sulfagvanidina, sulfamerazina, sulfometazina i sulfametoksazola u diazoderivate koji kondenzacijom s 8-hidroksikinolinom u alkalnom mediju daju crveno obojene produkte s maksimumom apsorpcije pri 500 nm. Beerov zakon vrijedi u koncentracijskom rasponu 0,17,0 µg mL1. Granice kvantifikacije i granice detekcije su 0,11-0,18, odnosno 0,03-0,05 µg mL-1. Za predloženu metodu procijenjene su intermedirska preciznost (RSD 0.1-0,5%) i točnost (analitički povrat 97,3-100,8). Uobičanjene pomoćne tvari u tabletama ne interferiraju tijekom određivanja. Metoda je uspješno primijenjena za analizu sulfonamida u farmaceutskim pripravcima

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Sporoschisma Berk. & Br. from India

    No full text

    A new subramania from Hyderabad

    No full text

    Evaluation of distribution coefficient of vadose zone soil from proposed near-surface disposal facility at Kalpakkam, India

    No full text
    Near-surface disposal facility for storing low and intermediate levels of radioactive waste is proposed to be built in the premises of the Madras Atomic Power Station, Kalpakkam, India. The waste inventory of proposed near-surface disposal facility (NSDF) at Kalpakkam would predominantly contain radioactive strontium and cesium ions, and major portion of the NSDF would be located in the 3.2 m thick unsaturated soil zone. As distribution coefficient (K-d) has an important bearing on contaminant transport, the paper examines how strontium retention varies with surface coverage in column experiments, and compares cumulative strontium retention using column and batch techniques. Results of column experiments show that strontium ion retention by the vadose zone soil for individual pore volumes (K-dpvi) is maximum at immediate surface coverage (between 0.002 and 0.007 C/C-0). The maximum K-dpvi values at immediate surface coverage are strongly influenced by variations in cation composition of the permeants. The maximum K-d values steeply reduce (by 99 %) to near equilibrium values at 0.1-0.29 C/C-0 for all permeant compositions, suggesting that preferred adsorption site for strontium retention is exhausted at low surface coverage. The K-d values from batch experiments are smaller than cumulative K-d values of column experiments owing to much larger solution volume to soil solid ratio of batch experiments. Retardation factors based on cumulative K-d values of column experiments and those based on batch K-d values are comparable

    Role of the vadose zone in mitigating strontium transport at the near-surface disposal facility (NSDF) in Kalpakkam, India

    No full text
    A proposal has been advanced to construct a near-surface disposal facility for storing low- and intermediate-level radioactive waste on the premises of the Madras Atomic Power Station, Kalpakkam, located 80 km south of Chennai, India. The NSDF comprises a series of reinforced concrete trenches (RCTs), with major portions located in the unsaturated (vadose) soil zone. This zone is an important barrier against contaminant transport, as discontinuity in water-filled voids hinders solute transport to the underlying groundwater table. The hydraulic properties of the vadose zone, including soil-water characteristic curve (SWCC) and unsaturated permeability coefficient (k (unsat)), are important parameters in developing transport models for moisture and contaminants. As geotechnical characterization of the vadose zone soil at the proposed NSDF location has not been performed, the present study establishes hydraulic properties from field and laboratory measurements of soil samples. A one-dimensional model has been created for predicting strontium migration through the vadose zone for a range of volumetric content (theta; 0.16-0.44), based on the computed groundwater velocities and measured K (d) value. The results indicate that the presence of a 3-m vadose zone below the NSDF at Kalpakkam could result in a period of greater than 1000 years to attain strontium breakthrough concentration in groundwater, while the absence of the vadose zone would lead to strontium breakthrough concentration in 1-10 years

    Characterization of Ariake and other marine clays

    No full text
    Characterisation of marine clays is an important aspect of understanding their behaviour. Investigation showed that there is a good linear relationship between percent clay and liquid limit and plastic limit. Sand and silt fraction has only diluted the magnitude of liquid limit and plastic limit. The ratio of plastic limit to liquid limit is almost a constant irrespective of percent sand fraction and is a function of clay mineral type or mixture of clay minerals, associated cations and ion concentration. Marine clays of Japan around Ariake bay (Hachirogata, Ariake – Ushiya, Meguri, Okishin and Yamaashi)have shown good correlation between plastic and liquid limits and this ratio ranged between 0.35 to 0.50 as against 0.07 (Limontmorillonite)to 0.88 (halloysite) of pure clay minerals. Cochin marine clay behaviour compares well with Ariake-Ushiya, although their geological history is entirely different. The revised plasticity chart with liquid limit and plastic limit as coordinates appears to be a better representation of fine grained soils

    Impact of pit-toilet leachate on groundwater chemistry and role of vadose zone in removal of nitrate and E-coli pollutants in Kolar District, Karnataka, India

    No full text
    Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl-, SO4 (2-)) caused the mixed Ca-Mg-Cl type (60 %) and Na-Cl type (28 %) facies to predominate groundwater inside the town, while, Ca-HCO3 (35 %), mixed Ca-Mg-Cl type (35 %) and mixed Ca-Na-HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (> 19 m thickness) favor denitrification resulting in lower nitrate concentrations (28-96 mg/L) in deeper water tables (located at depths of -29 to -39 m)

    Influence of physico-chemical components on the consolidation behavior of soft kaolinites

    No full text
    Pore solution salinity has important bearing on engineering behavior of marine sediments as they influence electrochemical stress (A-R) and differential osmotic stress (Delta pi) of the salt-enriched clays. The electrochemical stress (A-R) is contributed by van der Waals (A) attraction and diffuse ion layer repulsion (R) , while the differential osmotic stress (Delta pi) is governed by the differences in dissolved salt concentrations in solutions separated by osmotic membrane. The paper examines the relative influence of differential osmotic stress (Delta pi) and electrochemical stress (A-R) on the consolidation behavior of slurry consolidated kaolinite specimens, which are known to be encountered in recent alluvial marine sediments. Methods are described to evaluate the magnitudes of these physico-chemical components and their incorporation in true effective stress. Results of the study demonstrate that differential osmotic stress finitely contributes to true effective stress. The contribution from differential osmotic stress enables kaolinite specimens to sustain larger void ratio during consolidation
    corecore