62 research outputs found
Acute effects of nicotine on visual search tasks in young adult smokers
Rationale Nicotine is known to improve performance on tests involving sustained attention and recent research suggests that nicotine may also improve performance on tests involving the strategic allocation of attention and working memory. Objectives We used measures of accuracy and response latency combined with eye-tracking techniques to examine the effects of nicotine on visual search tasks. Methods In experiment 1 smokers and non-smokers performed pop-out and serial search tasks. In experiment 2, we used a within-subject design and a more demanding search task for multiple targets. In both studies, 2-h abstinent smokers were asked to smoke one of their own cigarettes between baseline and tests. Results In experiment 1, pop-out search times were faster after nicotine, without a loss in accuracy. Similar effects were observed for serial searches, but these were significant only at a trend level. In experiment 2, nicotine facilitated a strategic change in eye movements resulting in a higher proportion of fixations on target letters. If the cigarette was smoked on the first trial (when the task was novel), nicotine additionally reduced the total number of fixations and refixations on all letters in the display. Conclusions Nicotine improves visual search performance by speeding up search time and enabling a better focus of attention on task relevant items. This appears to reflect more efficient inhibition of eye movements towards task irrelevant stimuli, and better active maintenance of task goals. When the task is novel, and therefore more difficult, nicotine lessens the need to refixate previously seen letters, suggesting an improvement in working memory
Sex dependency of inhibitory control functions
BACKGROUND: Inhibition of irrelevant responses is an important aspect of cognitive control of a goal-directed behavior. Females and males show different levels of susceptibility to neuropsychological disorders such as impulsive behavior and addiction, which might be related to differences in inhibitory brain functions. METHODS: We examined the effects of ‘practice to inhibit’, as a model of rehabilitation approach, and ‘music’, as a salient contextual factor in influencing cognition, on the ability of females and males to perform a stop-signal task that required inhibition of initiated or planned responses. In go trials, the participants had to rapidly respond to a directional go cue within a limited time window. In stop trials, which were presented less frequently, a stop signal appeared immediately after the go-direction cue and the participants had to stop their responses. RESULTS: We found a significant difference between females and males in benefiting from practice in the stop-signal task: the percentage of correct responses in the go trials increased, and the ability to inhibit responses significantly improved, after practice in females. While listening to music, females became faster but males became slower in responding to the go trials. Both females and males became slower in performing the go trials following an error in the stop trials; however, music significantly affected this post-error slowing depending on the sex. Listening to music decreased post-error slowing in females but had an opposite effect in males. CONCLUSIONC: Here, we show a significant difference in executive control functions and their modulation by contextual factors between females and males that might have implications for the differences in their propensity for particular neuropsychological disorders and related rehabilitation approaches
Aging and Visual Counting
Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a "single glance", without the confounding influence of eye movements.We recruited 104 observers with normal vision across the age span (age 21-85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61-85: ∼5 dots) when compared with the youngest groups (age 21-40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin
- …