229 research outputs found
Homogeneous nucleation near a second phase transition and Ostwald's step rule
Homogeneous nucleation of the new phase of one transition near a second phase
transition is considered. The system has two phase transitions, we study the
nucleation of the new phase of one of these transitions under conditions such
that we are near or at the second phase transition. The second transition is an
Ising-like transition and lies within the coexistence region of the first
transition. It effects the formation of the new phase in two ways. The first is
by reducing the nucleation barrier to direct nucleation. The second is by the
system undergoing the second transition and transforming to a state in which
the barrier to nucleation is greatly reduced. The second way occurs when the
barrier to undergoing the second phase transition is less than that of the
first phase transition, and is in accordance with Ostwald's rule.Comment: 11 pages, 5 figure
Reaction coordinates for the flipping of genetic switches
We present a detailed analysis, based on the Forward Flux Sampling (FFS)
simulation method, of the switching dynamics and stability of two models of
genetic toggle switches, consisting of two mutually-repressing genes encoding
transcription factors (TFs); in one model (the exclusive switch), they mutually
exclude each other's binding, while in the other model (general switch) the two
transcription factors can bind simultaneously to the shared operator region. We
assess the role of two pairs of reactions that influence the stability of these
switches: TF-TF homodimerisation and TF-DNA association/dissociation. We
factorise the flipping rate k into the product of the probability rho(q*) of
finding the system at the dividing surface (separatrix) between the two stable
states, and a kinetic prefactor R. In the case of the exclusive switch, the
rate of TF-operator binding affects both rho(q*) and R, while the rate of TF
dimerisation affects only R. In the case of the general switch both TF-operator
binding and TF dimerisation affect k, R and rho(q*). To elucidate this, we
analyse the transition state ensemble (TSE). For the exclusive switch, varying
the rate of TF-operator binding can drastically change the pathway of
switching, while changing the rate of dimerisation changes the switching rate
without altering the mechanism. The switching pathways of the general switch
are highly robust to changes in the rate constants of both TF-operator and
TF-TF binding, even though these rate constants do affect the flipping rate;
this feature is unique for non-equilibrium systems.Comment: 24 pages, 7 figure
When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State
During development, morphogen gradients precisely determine the position of
gene expression boundaries despite the inevitable presence of fluctuations.
Recent experiments suggest that some morphogen gradients may be interpreted
prior to reaching steady-state. Theoretical work has predicted that such
systems will be more robust to embryo-to-embryo fluctuations. By analysing two
experimentally motivated models of morphogen gradient formation, we investigate
the positional precision of gene expression boundaries determined by
pre-steady-state morphogen gradients in the presence of embryo-to-embryo
fluctuations, internal biochemical noise and variations in the timing of
morphogen measurement. Morphogens that are direct transcription factors are
found to be particularly sensitive to internal noise when interpreted prior to
steady-state, disadvantaging early measurement, even in the presence of large
embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors
can be measured prior to steady-state without significant decrease in
positional precision provided fluctuations in the timing of measurement are
small. Applying our results to experiment, we predict that Bicoid, a
transcription factor morphogen in Drosophila, is unlikely to be interpreted
prior to reaching steady-state. We also predict that Activin in Xenopus and
Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be
decoded in pre-steady-state.Comment: 18 pages, 3 figure
Radial Squeezed States and Rydberg Wave Packets
We outline an analytical framework for the treatment of radial Rydberg wave
packets produced by short laser pulses in the absence of external electric and
magnetic fields. Wave packets of this type are localized in the radial
coordinates and have p-state angular distributions. We argue that they can be
described by a particular analytical class of squeezed states, called radial
squeezed states. For hydrogenic Rydberg atoms, we discuss the time evolution of
the corresponding hydrogenic radial squeezed states. They are found to undergo
decoherence and collapse, followed by fractional and full revivals. We also
present their uncertainty product and uncertainty ratio as functions of time.
Our results show that hydrogenic radial squeezed states provide a suitable
analytical description of hydrogenic Rydberg atoms excited by short-pulsed
laser fields.Comment: published in Physical Review
Hydrophobic interactions: an overview
We present an overview of the recent progress that has been made in
understanding the origin of hydrophobic interactions. We discuss the different
character of the solvation behavior of apolar solutes at small and large length
scales. We emphasize that the crossover in the solvation behavior arises from a
collective effect, which means that implicit solvent models should be used with
care. We then discuss a recently developed explicit solvent model, in which the
solvent is not described at the atomic level, but rather at the level of a
density field. The model is based upon a lattice-gas model, which describes
density fluctuations in the solvent at large length scales, and a Gaussian
model, which describes density fluctuations at smaller length scales. By
integrating out the small length scale field, a Hamiltonian is obtained, which
is a function of the binary, large-length scale field only. This makes it
possible to simulate much larger systems than hitherto possible as demonstrated
by the application of the model to the collapse of an ideal hydrophobic
polymer. The results show that the collapse is dominated by the dynamics of the
solvent, in particular the formation of a vapor bubble of critical size.
Implications of these findings to the understanding of pressure denaturation of
proteins are discussed.Comment: 10 pages, 4 figure
Robust circadian clocks from coupled protein modification and transcription-translation cycles
The cyanobacterium Synechococcus elongatus uses both a protein
phosphorylation cycle and a transcription-translation cycle to generate
circadian rhythms that are highly robust against biochemical noise. We use
stochastic simulations to analyze how these cycles interact to generate stable
rhythms in growing, dividing cells. We find that a protein phosphorylation
cycle by itself is robust when protein turnover is low. For high decay or
dilution rates (and co mpensating synthesis rate), however, the
phosphorylation-based oscillator loses its integrity. Circadian rhythms thus
cannot be generated with a phosphorylation cycle alone when the growth rate,
and consequently the rate of protein dilution, is high enough; in practice, a
purely post-translational clock ceases to function well when the cell doubling
time drops below the 24 hour clock period. At higher growth rates, a
transcription-translation cycle becomes essential for generating robust
circadian rhythms. Interestingly, while a transcription-translation cycle is
necessary to sustain a phosphorylation cycle at high growth rates, a
phosphorylation cycle can dramatically enhance the robustness of a
transcription-translation cycle at lower protein decay or dilution rates. Our
analysis thus predicts that both cycles are required to generate robust
circadian rhythms over the full range of growth conditions.Comment: main text: 7 pages including 5 figures, supplementary information: 13
pages including 9 figure
Spatio-temporal correlations can drastically change the response of a MAPK pathway
Multisite covalent modification of proteins is omnipresent in eukaryotic
cells. A well-known example is the mitogen-activated protein kinase (MAPK)
cascade, where in each layer of the cascade a protein is phosphorylated at two
sites. It has long been known that the response of a MAPK pathway strongly
depends on whether the enzymes that modify the protein act processively or
distributively: distributive mechanism, in which the enzyme molecules have to
release the substrate molecules in between the modification of the two sites,
can generate an ultrasensitive response and lead to hysteresis and bistability.
We study by Green's Function Reaction Dynamics, a stochastic scheme that makes
it possible to simulate biochemical networks at the particle level and in time
and space, a dual phosphorylation cycle in which the enzymes act according to a
distributive mechanism. We find that the response of this network can differ
dramatically from that predicted by a mean-field analysis based on the chemical
rate equations. In particular, rapid rebindings of the enzyme molecules to the
substrate molecules after modification of the first site can markedly speed up
the response, and lead to loss of ultrasensitivity and bistability. In essence,
rapid enzyme-substrate rebindings can turn a distributive mechanism into a
processive mechanism. We argue that slow ADP release by the enzymes can protect
the system against these rapid rebindings, thus enabling ultrasensitivity and
bistability
A possible mechanism for cold denaturation of proteins at high pressure
We study cold denaturation of proteins at high pressures. Using
multicanonical Monte Carlo simulations of a model protein in a water bath, we
investigate the effect of water density fluctuations on protein stability. We
find that above the pressure where water freezes to the dense ice phase
( kbar), the mechanism for cold denaturation with decreasing
temperature is the loss of local low-density water structure. We find our
results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added
references Changed conten
- …