16,066 research outputs found
3D printing of cement composites
The aims of this study were to investigate the feasibility of generating 3D structures directly in rapid-hardening Portland cement (RHPC) using 3D Printing (3DP) technology. 3DP is a Additive Layer Manufacturing (ALM) process that generates parts directly from CAD in a layer-wise manner. 3D structures were successfully printed using a polyvinylalcohol: RHPC ratio of 3:97 w/w, with print resolutions of better than 1mm. The test components demonstrated the manufacture of features, including off-axis holes, overhangs / undercuts etc that would not be manufacturable using simple mould tools. Samples hardened by 1 day post-build immersion in water at RT offered Modulus of Rupture (MOR) values of up to 0.8±0.1MPa, and, after 26 days immersion in water at RT, offered MOR values of 2.2±0.2MPa, similar to bassanite-based materials more typically used in 3DP (1-3 MPa). Post-curing by water immersion restructured the structure, removing the layering typical of ALM processes, and infilling porosity
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for
\textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search
system for ultra-high dimensional datasets on a single machine, that does not
require similarity computations and is tailored for high-performance computing
platforms. By leveraging a LSH style randomized indexing procedure and
combining it with several principled techniques, such as reservoir sampling,
recent advances in one-pass minwise hashing, and count based estimations, we
reduce the computational and parallelization costs of similarity search, while
retaining sound theoretical guarantees.
We evaluate FLASH on several real, high-dimensional datasets from different
domains, including text, malicious URL, click-through prediction, social
networks, etc. Our experiments shed new light on the difficulties associated
with datasets having several million dimensions. Current state-of-the-art
implementations either fail on the presented scale or are orders of magnitude
slower than FLASH. FLASH is capable of computing an approximate k-NN graph,
from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than
10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam
dataset, using brute-force (), will require at least 20 teraflops. We
provide CPU and GPU implementations of FLASH for replicability of our results
Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of
cadmium sulfide nanotubes oriented along one direction. These nanotubes are
synthesized by horizontal capillary flow of two different chemical reagents
from opposite directions through nanochannels of porous anodic alumina which
are used primarily as nanoreactors. We show that uneven flow of different
chemical precursors is responsible for directionally asymmetric growth of these
nanotubes. On the basis of structural observations using scanning electron
microscopy, we argue that chemohydrodynamic convective interfacial instability
of multicomponent liquid-liquid reactive interface is necessary for sustained
nucleation of these CdS nanotubes at the edges of these porous nanochannels
over several hours. However, our estimates clearly suggest that classical
hydrodynamics cannot account for the occurrence of such instabilities at these
small length scales. Therefore, we present a case which necessitates further
investigation and understanding of chemohydrodynamic fluid flow through
nanoconfined channels in order to explain the occurrence of such interfacial
instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight
The effect of 2 mMol glutamine supplementation on HSP70 and TNF-α release by LPS stimulated blood from healthy children.
OBJECTIVE: Glutamine has been shown to promote heat shock protein 70 (HSP70) release both within experimental in vitro models of sepsis (2-10 mM) and in adults post trauma (0.5 g/kg), although the efficacy varies and is dependent on the model used. The effect of glutamine supplementation on HSP70 release in children is less clear. Therefore, the aim of this study was to investigate the effect of 2 mM glutamine added to incubation media on HSP70 and inflammatory mediator release in an in vitro model of paediatric sepsis using whole blood from healthy paediatric volunteers. METHODS: An in vitro whole blood endotoxin stimulation model using 1 μg/ml lipopolysaccharide (LPS) over a 24 h time period was used to investigate the effects of 2 mM glutamine on HSP70 and inflammatory mediator release in healthy children. RESULTS: The addition of 2 mM glutamine to the incubation media significantly increased HSP70 release over time (p < 0.05). This was associated with an early pro-inflammatory effect on TNF-α release at 4 h (p < 0.005) which was not seen at 24 h. There was a non significant trend towards higher levels of IL-6 and IL-10 following the addition of 2 mM glutamine, which appears to differ from the response reported in adult and animal models. CONCLUSION: Glutamine supplementation of incubation media promotes HSP70 and early TNF- α release in an in vitro model using blood samples from healthy children.This is the author accepted manuscript. The final version is available via Elsevier at http://dx.doi.org/10.1016/j.clnu.2014.12.00
Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo.
Spores of some species of the strictly anaerobic bacteria Clostridium naturally target and partially lyse the hypoxic cores of tumors, which tend to be refractory to conventional therapies. The anti-tumor effect can be augmented by engineering strains to convert a non-toxic prodrug into a cytotoxic drug specifically at the tumor site by expressing a prodrug-converting enzyme (PCE). Safe doses of the favored prodrug CB1954 lead to peak concentrations of 6.3 μM in patient sera, but at these concentration(s) known nitroreductase (NTR) PCEs for this prodrug show low activity. Furthermore, efficacious and safe Clostridium strains that stably express a PCE have not been reported. Here we identify a novel nitroreductase from Neisseria meningitidis, NmeNTR, which is able to activate CB1954 at clinically-achievable serum concentrations. An NmeNTR expression cassette, which does not contain an antibiotic resistance marker, was stably localized to the chromosome of Clostridium sporogenes using a new integration method, and the strain was disabled for safety and containment by making it a uracil auxotroph. The efficacy of Clostridium-Directed Enzyme Prodrug Therapy (CDEPT) using this system was demonstrated in a mouse xenograft model of human colon carcinoma. Substantial tumor suppression was achieved, and several animals were cured. These encouraging data suggest that the novel enzyme and strain engineering approach represent a promising platform for the clinical development of CDEPT
askMEDLINE: a free-text, natural language query tool for MEDLINE/PubMed
BACKGROUND: Plain language search tools for MEDLINE/PubMed are few. We wanted to develop a search tool that would allow anyone using a free-text, natural language query and without knowing specialized vocabularies that an expert searcher might use, to find relevant citations in MEDLINE/PubMed. This tool would translate a question into an efficient search. RESULTS: The accuracy and relevance of retrieved citations were compared to references cited in BMJ POEMs and CATs (critically appraised topics) questions from the University of Michigan Department of Pediatrics. askMEDLINE correctly matched the cited references 75.8% in POEMs and 89.2 % in CATs questions on first pass. When articles that were deemed to be relevant to the clinical questions were included, the overall efficiency in retrieving journal articles was 96.8% (POEMs) and 96.3% (CATs.) CONCLUSION: askMEDLINE might be a useful search tool for clinicians, researchers, and other information seekers interested in finding current evidence in MEDLINE/PubMed. The text-only format could be convenient for users with wireless handheld devices and those with low-bandwidth connections in remote locations
Recommended from our members
A Clustered Overflow Configuration of Inpatient Beds in Hospitals
Problem Definition: The shortage of inpatient beds is a major cause of delays and cancellations in many hospitals. It may also lead to patients being admitted to inappropriate wards, whereby resulting in a lower quality of care and a longer length of stay.
Academic/Practical Relevance: Investment in additional beds is not always feasible. Instead, new and creative solutions for a more efficient use of existing resources must be sought.
Methodology: We propose a new configuration of inpatient beds which we call the clustered overflow configuration. In this configuration, patients who are denied admission to their primary wards as a result of beds being fully occupied are admitted to overflow wards, with each designated to serve overflows from a certain subset of specialties and providing the same quality of care as in primary wards. We propose two different formulations for partitioning and bed allocation in the proposed configuration: one minimizing the sum of average daily costs of turning patients away and nursing teams, and another minimizing the numbers turned away subject to nursing cost falling below a given threshold. We heuristically solve instances from both formulations.
Results: Applying the models to real data shows that the configurations obtained from our models compare very well with the other configurations proposed in the literature, provided that
patients' willingness to wait is relatively short.
Managerial Implications: The proposed configuration provides the combined advantages of the dedicated configuration, wherein patients are only admitted to their primary wards, and the exible configuration, in which all specialties share a single ward. On the other hand, it restricts the adverse impacts of pooling and minimizes cross-training costs through appropriate partitioning and bed allocation. As such, it serves as a viable alternative to existing inpatient configurations
- …