19,788 research outputs found

    Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level

    Full text link
    The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier is analyzed using weak-chemisorption theory. The electronic structure of the uncoupled PTCDA molecule and of the metal surface is calculated. Then, the induced density of interface states is obtained as a function of these two electronic structures and the interaction between both systems. This induced density of states is found to be large enough (even if the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital. We conclude that the metal/PTCDA interface molecular level alignment is due to the electrostatic dipole created by the charge transfer between the two solids.Comment: 6 page

    Validation of the 3-under-2 principle of cell wall growth in Gram-positive bacteria by simulation of a simple coarse-grained model

    Full text link
    The aim of this work is to propose a first coarse-grained model of Bacillus subtilis cell wall, handling explicitly the existence of multiple layers of peptidoglycans. In this first work, we aim at the validation of the recently proposed "three under two" principle.Comment: Revised introduction, results unchange

    Anderson Localization in Disordered Vibrating Rods

    Full text link
    We study, both experimentally and numerically, the Anderson localization phenomenon in torsional waves of a disordered elastic rod, which consists of a cylinder with randomly spaced notches. We find that the normal-mode wave amplitudes are exponentially localized as occurs in disordered solids. The localization length is measured using these wave amplitudes and it is shown to decrease as a function of frequency. The normal-mode spectrum is also measured as well as computed, so its level statistics can be analyzed. Fitting the nearest-neighbor spacing distribution a level repulsion parameter is defined that also varies with frequency. The localization length can then be expressed as a function of the repulsion parameter. There exists a range in which the localization length is a linear function of the repulsion parameter, which is consistent with Random Matrix Theory. However, at low values of the repulsion parameter the linear dependence does not hold.Comment: 10 pages, 6 figure

    Renormalization of the baryon axial vector current in large-N_c chiral perturbation theory

    Get PDF
    The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large-N_c limit, where N_c is the number of colors. Loop graphs with octet and decuplet intermediate states cancel to various orders in N_c as a consequence of the large-N_c spin-flavor symmetry of QCD baryons. These cancellations are explicitly shown for the general case of N_f flavors of light quarks. In particular, a new generic cancellation is identified in the renormalization of the baryon axial vector current at one-loop order. A comparison with conventional heavy baryon chiral perturbation theory is performed at the physical values N_c=3, N_f=3.Comment: REVTex4, 29 pages, 2 figures, 6 tables. Equations (32) and (81) corrected. Some typos fixed. Results and conclusions remain unchange

    Localization Properties of the Periodic Random Anderson Model

    Full text link
    We consider diagonal disordered one-dimensional Anderson models with an underlying periodicity. We assume the simplest periodicity, i.e., we have essentially two lattices, one that is composed of the random potentials and the other of non-random potentials. Due to the periodicity special resonance energies appear, which are related to the lattice constant of the non-random lattice. Further on two different types of behaviors are observed at the resonance energies. When a random site is surrounded by non-random sites, this model exhibits extended states at the resonance energies, whereas otherwise all states are localized with, however, an increase of the localization length at these resonance energies. We study these resonance energies and evaluate the localization length and the density of states around these energies.Comment: 4 page

    Formation of atom wires on vicinal silicon

    Full text link
    The formation of atomic wires via pseudomorphic step-edge decoration on vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using Scanning Tunneling Microscopy and Density Functional Theory calculations. Based on a chemical potential analysis involving more than thirty candidate structures and considering various fabrication procedures, it is concluded that pseudomorphic growth on stepped Si(112), both under equilibrium and non-equilibrium conditions, must favor formation of Ga zig-zag chains rather than linear atom chains. The surface is non-metallic and presents quasi-one dimensional character in the lowest conduction band.Comment: submitte

    Efeito da atmosfera controlada na qualidade pĂłs-colheita de mirtilo CV. Bluegem.

    Get PDF
    bitstream/item/30573/1/boletim-113.pd
    • …
    corecore