19,788 research outputs found
Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level
The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic
dianhydride) interface barrier is analyzed using weak-chemisorption theory. The
electronic structure of the uncoupled PTCDA molecule and of the metal surface
is calculated. Then, the induced density of interface states is obtained as a
function of these two electronic structures and the interaction between both
systems. This induced density of states is found to be large enough (even if
the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality
Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital.
We conclude that the metal/PTCDA interface molecular level alignment is due to
the electrostatic dipole created by the charge transfer between the two solids.Comment: 6 page
Validation of the 3-under-2 principle of cell wall growth in Gram-positive bacteria by simulation of a simple coarse-grained model
The aim of this work is to propose a first coarse-grained model of Bacillus
subtilis cell wall, handling explicitly the existence of multiple layers of
peptidoglycans. In this first work, we aim at the validation of the recently
proposed "three under two" principle.Comment: Revised introduction, results unchange
Anderson Localization in Disordered Vibrating Rods
We study, both experimentally and numerically, the Anderson localization
phenomenon in torsional waves of a disordered elastic rod, which consists of a
cylinder with randomly spaced notches. We find that the normal-mode wave
amplitudes are exponentially localized as occurs in disordered solids. The
localization length is measured using these wave amplitudes and it is shown to
decrease as a function of frequency. The normal-mode spectrum is also measured
as well as computed, so its level statistics can be analyzed. Fitting the
nearest-neighbor spacing distribution a level repulsion parameter is defined
that also varies with frequency. The localization length can then be expressed
as a function of the repulsion parameter. There exists a range in which the
localization length is a linear function of the repulsion parameter, which is
consistent with Random Matrix Theory. However, at low values of the repulsion
parameter the linear dependence does not hold.Comment: 10 pages, 6 figure
Renormalization of the baryon axial vector current in large-N_c chiral perturbation theory
The baryon axial vector current is computed at one-loop order in heavy baryon
chiral perturbation theory in the large-N_c limit, where N_c is the number of
colors. Loop graphs with octet and decuplet intermediate states cancel to
various orders in N_c as a consequence of the large-N_c spin-flavor symmetry of
QCD baryons. These cancellations are explicitly shown for the general case of
N_f flavors of light quarks. In particular, a new generic cancellation is
identified in the renormalization of the baryon axial vector current at
one-loop order. A comparison with conventional heavy baryon chiral perturbation
theory is performed at the physical values N_c=3, N_f=3.Comment: REVTex4, 29 pages, 2 figures, 6 tables. Equations (32) and (81)
corrected. Some typos fixed. Results and conclusions remain unchange
Localization Properties of the Periodic Random Anderson Model
We consider diagonal disordered one-dimensional Anderson models with an
underlying periodicity. We assume the simplest periodicity, i.e., we have
essentially two lattices, one that is composed of the random potentials and the
other of non-random potentials. Due to the periodicity special resonance
energies appear, which are related to the lattice constant of the non-random
lattice. Further on two different types of behaviors are observed at the
resonance energies. When a random site is surrounded by non-random sites, this
model exhibits extended states at the resonance energies, whereas otherwise all
states are localized with, however, an increase of the localization length at
these resonance energies. We study these resonance energies and evaluate the
localization length and the density of states around these energies.Comment: 4 page
Formation of atom wires on vicinal silicon
The formation of atomic wires via pseudomorphic step-edge decoration on
vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using
Scanning Tunneling Microscopy and Density Functional Theory calculations. Based
on a chemical potential analysis involving more than thirty candidate
structures and considering various fabrication procedures, it is concluded that
pseudomorphic growth on stepped Si(112), both under equilibrium and
non-equilibrium conditions, must favor formation of Ga zig-zag chains rather
than linear atom chains. The surface is non-metallic and presents quasi-one
dimensional character in the lowest conduction band.Comment: submitte
Efeito da atmosfera controlada na qualidade pĂłs-colheita de mirtilo CV. Bluegem.
bitstream/item/30573/1/boletim-113.pd
- …