23,291 research outputs found
Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin- Models
We apply the microscopic coupled-cluster method (CCM) to the spin-
models on both the one-dimensional chain and the two-dimensional square
lattice. Based on a systematic approximation scheme of the CCM developed by us
previously, we carry out high-order {\it ab initio} calculations using
computer-algebraic techniques. The ground-state properties of the models are
obtained with high accuracy as functions of the anisotropy parameter.
Furthermore, our CCM analysis enables us to study their quantum critical
behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon
request. UMIST Preprint MA-000-000
Characterizing Multi-planet Systems with Classical Secular Theory
Classical secular theory can be a powerful tool to describe the qualitative
character of multi-planet systems and offer insight into their histories. The
eigenmodes of the secular behavior, rather than current orbital elements, can
help identify tidal effects, early planet-planet scattering, and dynamical
coupling among the planets, for systems in which mean-motion resonances do not
play a role. Although tidal damping can result in aligned major axes after all
but one eigenmode have damped away, such alignment may simply be fortuitous. An
example of this is 55 Cancri (orbital solution of Fischer et al., 2008) where
multiple eigenmodes remain undamped. Various solutions for 55 Cancri are
compared, showing differing dynamical groupings, with implications for the
coupling of eccentricities and for the partitioning of damping among the
planets. Solutions for orbits that include expectations of past tidal evolution
with observational data, must take into account which eigenmodes should be
damped, rather than expecting particular eccentricities to be near zero.
Classical secular theory is only accurate for low eccentricity values, but
comparison with other results suggests that it can yield useful qualitative
descriptions of behavior even for moderately large eccentricity values, and may
have advantages for revealing underlying physical processes and, as large
numbers of new systems are discovered, for triage to identify where more
comprehensive dynamical studies should have priority.Comment: Published in Celestial Mechanics and Dynamical Astronomy, 25 pages,
10 figure
Consistency of dust solutions with div H=0
One of the necessary covariant conditions for gravitational radiation is the
vanishing of the divergence of the magnetic Weyl tensor H_{ab}, while H_{ab}
itself is nonzero. We complete a recent analysis by showing that in
irrotational dust spacetimes, the condition div H=0 evolves consistently in the
exact nonlinear theory.Comment: 3 pages Revte
Observation of fine one-dimensionally disordered layers in silicon carbide
The improved resolution of synchrotron edge-topography is enabling thinner (less than 100 microns), silicon carbide crystals to be studied, and is providing a more detailed and wider database on polytype depth profiles. Fine long-period and one-dimensionally-disordered layers, 5-25 microns thick, can now be confidently resolved and are found to be very common features, often in association with high-defect density bands. These features are illustrated in this paper using three examples. A new long period polytype LPP (152H/456R) has been discovered and reported here for the first time
From ‘other’ to involved: User involvement in research: An emerging paradigm
This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 The Author(s).
This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.This article explores the issue of ‘othering’ service users and the role that involving them, particularly in social policy and social work research may play in reducing this. It takes, as its starting point, the concept of ‘social exclusion’, which has developed in Europe and the marginal role that those who have been included in this construct have played in its development and the damaging effects this may have. The article explores service user involvement in research and is itself written from a service user perspective. It pays particular attention to the ideological, practical, theoretical, ethical and methodological issues that such user involvement may raise for research. It examines problems that both research and user involvement may give rise to and also considers developments internationally to involve service users/subjects of research, highlighting some of the possible implications and gains of engaging service user knowledge in research and the need for this to be evaluated
Color Difference Makes a Difference: Four Planet Candidates around τ Ceti
The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial-velocity (RV) method to detect Earth analogues. We analyze τ Ceti RV data and find robust evidence for wavelength-dependent noise. We find that this noise can be modeled by a combination of moving average models and the so-called "differential radial velocities." We apply this noise model to various RV data sets for τ Ceti, and find four periodic signals at 20.0, 49.3, 160, and 642 days, which we interpret as planets. We identify two new signals with orbital periods of 20.0 and 49.3 days while the other two previously suspected signals around 160 and 600 days are quantified to a higher precision. The 20.0 days candidate is independently detected in Keck data. All planets detected in this work have minimum masses less than 4M⊕ with the two long-period ones located around the inner and outer edges of the habitable zone, respectively. We find that the instrumental noise gives rise to a precision limit of the High Accuracy Radial Velocity Planet Searcher (HARPS) around 0.2 m s−1. We also find correlation between the HARPS data and the central moments of the spectral line profile at around 0.5 m s−1 level, although these central moments may contain both noise and signals. The signals detected in this work have semi-amplitudes as low as 0.3 m s−1, demonstrating the ability of the RV technique to detect relatively weak signals
Spin Excitations and Sum Rules in the Heisenberg Antiferromagnet
Various bounds for the energy of collective excitations in the Heisenberg
antiferromagnet are presented and discussed using the formalism of sum rules.
We show that the Feynman approximation significantly overestimates (by about
30\% in the square lattice) the spin velocity due to the non
negligible contribution of multi magnons to the energy weighted sum rule. We
also discuss a different, Goldstone type bound depending explicitly on the
order parameter (staggered magnetization). This bound is shown to be
proportional to the dispersion of classical spin wave theory with a
q-independent normalization factor. Rigorous bounds for the excitation energies
in the anisotropic Heisenberg model are also presented.Comment: 26 pages, Plain TeX including 1 PostScript figure, UTF-307-10/9
Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c
Spin transfer observables for the strangeness-production reaction
Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185
collaboration using a transversely-polarized frozen-spin target with an
antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at
CERN. This measurement investigates observables for which current models of the
reaction near threshold make significantly differing predictions. Those models
are in good agreement with existing measurements performed with unpolarized
particles in the initial state. Theoretical attention has focused on the fact
that these models produce conflicting predictions for the spin-transfer
observables D_{nn} and K_{nn}, which are measurable only with polarized target
or beam. Results presented here for D_{nn} and K_{nn} are found to be in
disagreement with predictions from existing models. These results also
underscore the importance of singlet-state production at backward angles, while
current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure
Determining the influence and effects of manufacturing variables on sulfur dioxide cells
A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations
- …