101 research outputs found

    Evidence of niche partitioning under ontogenetic influences among three morphologically similar siluriformes in small subtropical streams

    Get PDF
    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed

    A Computational Model of the Ionic Currents, Ca2+ Dynamics and Action Potentials Underlying Contraction of Isolated Uterine Smooth Muscle

    Get PDF
    Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels
    corecore