54 research outputs found
Interactive Effects of Inducible Defense and Resource Availability on Phlorotannins in the North Atlantic Brown Alga \u3ci\u3eFucus vesiculosus\u3c/i\u3e
Research seeking to explain the ecological role of polyphenolics (phlorotannins) in plants and brown algae has largely focused on 2 alternative concepts, the carbon/nutrient (C/N) balance and the inducible defense models. We tested the hierarchy of effects of both models on phlorotannin production in the brown alga Fucus vesiculosus (Fucales) by simultaneously manipulating the N environment and simulating herbivory for 2 oceanic (high and low intertidal) and estuarine populations. We measured phlorotannin levels in algae under control, grazed, N-enriched, and grazed + N-enriched treatments with time (0 to 14 d) throughout the year to determine onset and duration of the response. We found greater support for the inducible defense model; generally, both grazed and grazed + N- enriched fronds had significantly higher phlorotannin concentrations than control thalli. When we found an inducible response, it was rapid (within 3 d) and relatively long term (\u3e2 wk). However, the induced response was minimal for both oceanic populations during March, perhaps due to fixed-C limitation, and was absent for the estuarine and high intertidal populations during June, the period of peak phlorotannins at both sites. Although N enrichment resulted in depressed concentrations of phlorotannins only for the estuarine population, we did measure a significant negative correlation between tissue N and phenolics for the oceanic population, as predicted by the C/N balance model. Thus, while the inducible defense response takes preeminence over resource availability effects (C/N balance hypothesis), this study revealed that phlorotannin production is likely controlled by a complex interaction of environmental, developmental and defense-related factors, emphasizing the applicability of both models in marine systems
Population Recovery and Differential Heat Shock Protein Expression for the Corals \u3ci\u3eAgaricia agaricites\u3c/i\u3e and \u3ci\u3eA. tenuifolia\u3c/i\u3e in Belize
Over recent decades, coral reefs worldwide have experienced severe sea-surface temperature (SST) anomalies. Associated with an El Niño-Southern Oscillation (ENSO) event of 1997-1998, nearly 100% mortality of the space-dominated coral Agaricia tenuifolia was reported at several shelf lagoonal sites of the Belize barrier reef system; a less abundant congener, A. agaricites, had lower mortality rates. We assessed A. agaricites and A. tenuifolia populations at coral reef ridges in the south-central sector of the Belize shelf lagoon and forereef sites to document recovery following the 1998 ENSO event and subsequent passage of Hurricane Mitch. To investigate the difference in heat stress tolerance between the 2 species, heat shock protein (HSP) expression was examined in the laboratory under ambient (28˚C) and elevated (+6˚C) temperatures. Populations of A. agaricites and A. tenuifolia surveyed at forereefs sites in 1999 showed after effects from the 2 disturbances (partial colony mortality was ~23 and 30% for A.agaricites and A. tenuifolia, respectively), but partial mortality declined by 2001. At reef ridge sites, A. tenuifolia exhibited 75 to 95% partial colony mortality in 1999 compared to 18% in the less abundant A. agaricites. We measured a significant increase in percentage live cover at ridge sites for both Agaricia species from 1999 to 2001, except at Tunicate Ridge; at this site, which has restricted water flow, live A. tenuifolia cover remained low (~10%) 3.5.yr after the 1998 warming event, due in part to high sponge cover (\u3e75%). Immunoblotting results indicate that A. agaricites had twice as much HSC 70 (16.9 µg cm-2) as A. tenuifolia (8.7 µg cm-2) at ambient temperatures and 6x as much under the +6˚C treatment. In addition to the inducible response by A. agaricites, this species expressed HSP 90, whereas A. tenuifolia did not. The distinctive patterns of population recovery and HSP expression suggest that A. tenuifolia has a lesser ability to produce HSPs for protection against environmental stress than A. agaricites. Such differences in resilience to large-scale environmental disturbances such as intermittent ENSO episodes may drive a dramatic change in coral species abundance patterns
Ecological Effects of Major Storms on Coastal Watersheds and Coastal Waters: Hurricane Bob on Cape Cod
Hurricane Bob, a category 3 storm, made landfall on Cape Cod in August 1991, and its effects on watersheds and adjoining estuaries were detected in the ongoing studies being caried out as part of the Waquoit Bay Land Margin Ecosystems Research project. On land, Bob had only minor overall effects on forests; localized wind bursts did snap and break trees in small and widely scattered forest parcels. Wind stripped up to half the leaves of deciduous trees and many herbaceous plants on the watershed, and most remaining leaves were damaged by salt, so that by the end of Aug, Cape Cod forests were defoliated. Damaged growing tips of exposed trees were evident for several growing seasons. The salt exposure was followed by a burst of growth and bloom in some plants during Sep-Oct. Forest invertebrates were disturbed by the storm. Nests of hornets and wasps, for example, were apparently destroyed and the survivors became a serious pest problem: hospital records show a ten-fold increase in cases of wasp stings just after Bob. Populations of these insects did not return to earlier abundance for several years. Birds and mammals did not appear to have suffered much damage. Leaching of salt to soils released previously-adsorbed soil ammonium. Such loss of critical nitrogen may be in part responsible for the characteristically dwarfed near-shore coastal forests, as well as adds nitrogen to groundwater that in turn transports the nitrogen to receiving waters. On the Bay, Bob thoroughly mixed the water column, but the stratification was restored within 1-2 days after passage of the storm. Short recovery times might be characteristic of shallow bays with short (2-3 d) water residence times. Bob opened a new inlet to Waquoit Bay, which remains open. The new inlet exerts only minor effects on circulation within the Bay, but did create localized damage to dune and eelgrass habitats near the new inlet. The mixing of the water column released major amounts of nutrients that were held within the macroalgal canopy and upper sediments, into the upper layers, and prompted a short-lived (2-3 d) phytoplankton bloom. Biomass of unattached macroalgae was not affected by Bob. Respiration and nitrogen content of the dominant macroalgal species were elevated after passage of the storm, but returned to normal rates after several days. Nearly all above-sediment eelgrass biomass was removed, but returned to previous biomass during the next growing season. There was no visible damage to fringing salt marsh habitats. Damage to aquatic animals appears to have been minimal. A small decrease in water temperature and increased respiration by macroalgae led to decreased total net ecosystem production and increased net ecosystem respiration, but the decreases disappeared after 2 d. The effects of Hurricane Bob seemed more intense and protracted on land than on aquatic ecosystems. Recovery from the various disturbances took hours to days in the aquatic system, but months to decades in terrestrial components. Rigid, larger organisms attached or rooted to substrates seem most subject to storm-related disturbances
Macrophyte abundance in Waquoit Bay : effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 31 (2008): 532-541, doi:10.1007/s12237-008-9039-6.Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems. To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for six years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha-1 y-1. Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries, but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the six years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.This research was supported by the National Oceanic and Atmospheric Administration (NOAA), Cooperative Institute for Coastal and Estuarine Environmental Technologies (CICEET-UNH#99-304, NOAA NA87OR512), NOAA National Estuarine Research Reserve Graduate Research Fellowship NERRS GRF, #NA77OR0228), and an Environmental Protection Agency (EPA) STAR Fellowship for Graduate Environmental Study (U-915335-01-0) awarded to J. Hauxwell. S. Fox was supported by a NOAA NERRS GRF (#NA03NOS4200132) and an EPA STAR Graduate Research Fellowship. We also thank the Quebec-Labrador Foundation Atlantic Center for the Environment's Sounds Conservancy Program and the Boston University Ablon/Bay Committee for their awarding research funds
Species-speciWc defense strategies of vegetative versus reproductive blades of the PaciWc kelps Lessonia nigrescens and Macrocystis integrifolia
Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae
- …