776 research outputs found

    Magnetic field-induced quantum critical point in YbPtIn and YbPt0.98_{0.98}In single crystals

    Full text link
    Detailed anisotropic (H∥\parallelab and H∥\parallelc) resistivity and specific heat measurements were performed on online-grown YbPtIn and solution-grown YbPt0.98_{0.98}In single crystals for temperatures down to 0.4 K, and fields up to 140 kG; H∥\parallelab Hall resistivity was also measured on the YbPt0.98_{0.98}In system for the same temperature and field ranges. All these measurements indicate that the small change in stoichiometry between the two compounds drastically affects their ordering temperatures (Tord≈3.4_{ord}\approx3.4 K in YbPtIn, and ∼2.2\sim2.2 K in YbPt0.98_{0.98}In). Furthermore, a field-induced quantum critical point is apparent in each of these heavy fermion systems, with the corresponding critical field values of YbPt0.98_{0.98}In (Hcab^{ab}_c around 35-45 kG and Hcc≈120^{c}_c\approx120 kG) also reduced compared to the analogous values for YbPtIn (Hcab≈60^{ab}_c\approx60 kG and Hcc>140^{c}_c>140 kG

    Field-Dependent Hall Effect in Single Crystal Heavy Fermion YbAgGe below 1K

    Get PDF
    We report the results of a low temperature (T >= 50 mK) and high field (H <= 180 kOe) study of the Hall resistivity in single crystals of YbAgGe, a heavy fermion compound that demonstrates field-induced non-Fermi-liquid behavior near its field-induced quantum critical point. Distinct features in the anisotropic, field-dependent Hall resistivity sharpen on cooling down and at the base temperature are close to the respective critical fields for the field-induced quantum critical point. The field range of the non-Fermi-liquid region decreases on cooling but remains finite at the base temperature with no indication of its conversion to a point for T -> 0. At the base temperature, the functional form of the field-dependent Hall coefficient is field direction dependent and complex beyond existing simple models thus reflecting the multi-component Fermi surface of the material and its non-trivial modification at the quantum critical point

    Field dependence of the thermopower of CeNiSn

    Full text link
    Previously measured thermopower data of CeNiSn exhibit a significant sample dependence and non-monotonous behavior in magnetic fields. In this paper we demonstrate that the measured thermopower S(T) may contain a contribution from the huge Nernst coefficient of the compound, even in moderate fields of 2 T. A correction for this effect allows to determine the intrinsic field dependence of S(T). The observed thermopower behavior can be understood from Zeeman splitting of a V-shaped pseudogap in magnetic fields.Comment: 4 pages, accepted for Journal of Physics: Conference Series, proceedings of LT 2

    Anisotropic Hall Effect in Single Crystal Heavy Fermion YbAgGe

    Full text link
    Temperature- and field-dependent Hall effect measurements are reported for YbAgGe, a heavy fermion compound exhibiting a field-induced quantum phase transition, and for two other closely related members of the RAgGe series: a non-magnetic analogue, LuAgGe and a representative, ''good local moment'', magnetic material, TmAgGe. Whereas the temperature dependent Hall coefficient of YbAgGe shows behavior similar to what has been observed in a number of heavy fermion compounds, the low temperature, field-dependent measurements reveal well defined, sudden changes with applied field; in specific for H⊥cH \perp c a clear local maximum that sharpens as temperature is reduced below 2 K and that approaches a value of 45 kOe - a value that has been proposed as the T=0T = 0 quantum critical point. Similar behavior was observed for H∥cH \| c where a clear minimum in the field-dependent Hall resistivity was observed at low temperatures. Although at our base temperatures it is difficult to distinguish between the field-dependent behavior predicted for (i) diffraction off a critical spin density wave or (ii) breakdown in the composite nature of the heavy electron, for both field directions there is a distinct temperature dependence of a feature that can clearly be associated with a field-induced quantum critical point at T=0T = 0 persisting up to at least 2 K.Comment: revised versio

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    Anisotropic optical conductivity of the putative Kondo insulator CeRu4_4Sn6_6

    Full text link
    Kondo insulators and in particular their non-cubic representatives have remained poorly understood. Here we report on the development of an anisotropic energy pseudogap in the tetragonal compound CeRu4_4Sn6_6 employing optical reflectivity measurements in broad frequency and temperature ranges, and local density approximation plus dynamical mean field theory calculations. The calculations provide evidence for a Kondo insulator-like response within the a−aa-a plane and a more metallic response along the c axis and qualitatively reproduce the experimental observations, helping to identify their origin
    • …
    corecore