23 research outputs found

    Laryngeal nerve “anastomoses”

    Get PDF
    Laryngeal nerves have been observed to communicate with each other and forma variety of patterns. These communications have been studied extensively and have been of particular interest as it may provide an additional form of innervation to the intrinsic laryngeal muscles. Variations noted in incidence may help explain the variable position of the vocal folds after vocal fold paralysis. This study aimed to examine the incidence of various neural communications and to determine their contribution to the innervation of the larynx. Fifty adult cadaveric en-bloc laryngeal specimens were studied. Three different types of communications were observed between internal and recurrent laryngeal nerves viz. (1) Galen’s anastomosis (81%): in 13%, it was observed to supply the posterior cricoarytenoid muscle; (2) thyroarytenoid communication (9%): this was observed to supply the thyroarytenoid musclein 2% of specimens and (3) arytenoid plexus (28%): in 6%, it supplied a branch tothe transverse arytenoid muscle. The only communication between the externaland recurrent laryngeal nerves was the communicating nerve (25%). In one lefthemi-larynx, the internal laryngeal nerve formed a communication with the externall aryngeal nerve, via a thyroid foramen. The neural communications that exist in the larynx have been thought to play a role in laryngeal innervation. The results of this study have shown varying incidences in neural communications. Contributions fromthese communications have also been noted to various in trinsic laryngeal muscles which may be a possible factor responsible for the variable position of the vocalfolds in certain cases of vocal fold paralysis

    A non-recurrent inferior laryngeal nerve in a man undergoing thyroidectomy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A non-recurrent variant of the inferior laryngeal nerve has been seldom reported. These reports are mostly based on cadaveric dissection studies or large chart review studies in which the emphasis is placed on the determination of the frequency of the variation, and not on the clinical appearance of this variant. We graphically describe the intraoperative identification of a non-recurrent inferior laryngeal nerve.</p> <p>Case Presentation</p> <p>A 44-year old Caucasian man was referred to the Head and Neck Surgery Outpatient Clinic with the diagnosis of a nodular mass in his left thyroid lobe that had been growing for one year. A fine needle aspiration puncture was compatible with thyroid papillary cancer. It was decided that the patient should undergo total thyroidectomy. During surgery, a non-recurrent right inferior laryngeal nerve was noted. This nerve emanated from the right vagus nerve, entering the larynx 3 cm after its origin. The nerve did not show a recurrent course. The nerve on the left side had a normal configuration. The surgery and post-operative period were uneventful, and the patient had no change in his voice.</p> <p>Conclusion</p> <p>This paper allows those interested to become acquainted with the normal intraoperative appearance of a non-recurrent inferior laryngeal nerve. This will undoubtedly be of significance for all of those performing invasive diagnostic and surgical procedures in the neck and upper thoracic regions, in order to minimize the risk of iatrogenic injury to this nerve. This is of extreme importance, since a unilateral lesion of this nerve may result in permanent hoarseness, and a bilateral lesion may lead to aphonia and life-threatening dyspnea.</p

    Galen's “Anastomosis” revisited

    Full text link

    The Lesser Occipital Nerve in Fetuses

    No full text

    Thoracic origin of a sympathetic supply to the upper limb: the ‘nerve of Kuntz’ revisited

    No full text
    An understanding of the origin of the sympathetic innervation of the upper limb is important in surgical sympathectomy procedures. An inconstant intrathoracic ramus which joined the 2nd intercostal nerve to the ventral ramus of the 1st thoracic nerve, proximal to the point where the latter gave a large branch to the brachial plexus, has become known as the ‘nerve of Kuntz’ (Kuntz, 1927). Subsequently a variety of sympathetic interneuronal connections down to the 5th intercostal space were reported and also described as the nerve of Kuntz. The aim of this study was to determine: (1) the incidence, location and course of the nerve of Kuntz; (2) the relationship of the nerve of Kuntz to the 2nd thoracic ganglion; (3) the variations of the nerve of Kuntz in the absence of a stellate ganglion; (4) to compare the original intrathoracic ramus with sympathetic variations at other intercostal levels; and (5) to devise an appropriate anatomical classification of the nerves of Kuntz. Bilateral microdissection of the sympathetic chain and somatic nerves of the upper 5 intercostal spaces was undertaken in 32 fetuses (gestational age, 18 wk to full term) and 18 adult cadavers. The total sample size comprised 99 sides. Sympathetic contributions to the first thoracic nerve were found in 60 of 99 sides (left 32, right 28). Of these, 46 were confined to the 1st intercostal space only. The nerve of Kuntz (the original intrathoracic ramus) of the 1st intercostal space had a demonstrable sympathetic connection in 34 cases, and an absence of macroscopic sympathetic connections in 12. In the remaining intercostal spaces, intrathoracic rami uniting intercostal nerves were not observed. Additional sympathetic contributions (exclusive of rami communicantes) were noted between ganglia, interganglionic segments and intercostal nerves as additional rami communicantes. The eponym nerve of Kuntz should be restricted to descriptions of the intrathoracic ramus of the 1st intercostal space. Any of these variant sympathetic pathways may be responsible for the recurrence of symptoms after sympathectomy surgery

    An Anatomical Study of the Arterial Supply to the Soft Palate

    No full text

    The Ansa Cervicalis in Fetuses

    Full text link

    The Incidence of the Foramen Thyroideum in the South African Population

    Full text link

    The Sympathetic and Parasympathetic Contributions to the Cardiac Plexus: a Fetal Study

    No full text
    corecore